已知焦點(diǎn)在x軸的雙曲線上一點(diǎn)P到雙曲線兩個(gè)焦點(diǎn)的距離分別為4和8,直線y=x-2被雙曲線截得的弦長為20
2
,求雙曲線的標(biāo)準(zhǔn)方程.
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線上一點(diǎn)P到雙曲線兩個(gè)焦點(diǎn)的距離分別為4和8,求出a,直線y=x-2代入
x2
4
-
y2
b2
=1
可得(b2-4)x2+16x-16-4b2=0,利用直線y=x-2被雙曲線截得的弦長為20
2
,求出b,即可求雙曲線的標(biāo)準(zhǔn)方程.
解答: 解:設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),則
∵雙曲線上一點(diǎn)P到雙曲線兩個(gè)焦點(diǎn)的距離分別為4和8,
∴2a=8-4,
∴a=2,
∴雙曲線方程為
x2
4
-
y2
b2
=1

直線y=x-2代入
x2
4
-
y2
b2
=1
可得(b2-4)x2+16x-16-4b2=0,
設(shè)交點(diǎn)為(x1,y1),(x2,y2),則x1+x2=-
16
b2-4
,x1x2=
-16-4b2
b2-4
,
∴(20
2
2=(1+1)•[(-
16
b2-4
2-4×
-16-4b2
b2-4
],
∴b2=20,
∴雙曲線方程為
x2
4
-
y2
20
=1
點(diǎn)評:本題考查求雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|x<4或x≥7},B={x|-2<x<9}
(1)求A∪B,(∁UA)∩B;
(2)已知C={x|a<x<a+1},若B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校學(xué)生在一次學(xué)業(yè)水平測試中的數(shù)學(xué)成績制成如圖所示的頻率分布直方圖,60分以下的人要補(bǔ)考,已知90分以上的有80人,則該校需要補(bǔ)考的人數(shù)為( 。
A、120B、150
C、180D、200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a+1
x
-1(a>-1).
(Ⅰ)當(dāng)a=0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[e,+∞)時(shí),有x•f(x)≥2a恒成立(e=2.71828…),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}中,Sn=-4n2+25n+1.
(1)求{an}的通項(xiàng)公式;
(2)求a10+a11+a12+…+a20的值;
(3)求Sn最大時(shí)an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2sinθ,設(shè)A點(diǎn)的極坐標(biāo)為(2,
4
).
(1)求直線OA及曲線C的直角坐標(biāo)方程;
(2)設(shè)直線OA與曲線C的一個(gè)交點(diǎn)為P(不是原點(diǎn)O),過點(diǎn)P作直線OA的垂線l,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a2-a>0,函數(shù)y=a|x|(a>0,a≠1)的圖象形狀大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1:x2+4y2=1的左、右焦點(diǎn)分別為F1、F2,點(diǎn) P是C1上任意一點(diǎn),O是坐標(biāo)原點(diǎn),
OQ
=
PF1
+
PF2
,設(shè)點(diǎn)Q的軌跡為C2
(1)求點(diǎn)Q的軌跡C2的方程;
(2)若點(diǎn) T滿足:
OT
=
MN
+2
OM
+
ON
,其中 M,N是C2上的點(diǎn),且直線 O M,O N的斜率之積等于-
1
4
,是否存在兩定點(diǎn) A,B,使|T A|+|T B|為定值?若存在,求出這個(gè)定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)的圖象經(jīng)過點(diǎn)(0,0),且f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案