20.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為f(x)=2sin(2x-$\frac{5π}{6}$).

分析 根據(jù)三角函數(shù)的圖象與性質(zhì),得出A、T、ω與φ的值,即可寫出函數(shù)f(x)的解析式.

解答 解:由題意可知A=2,
T=2($\frac{2π}{3}$-$\frac{π}{6}$)=π,
∴ω=$\frac{2π}{T}$=2;
又當(dāng)x=$\frac{π}{6}$時(shí)f(x)=-2,
∴2sin(2×$\frac{π}{6}$+φ)=-2,
∴sin($\frac{π}{3}$+φ)=-1,
∴$\frac{π}{3}$+φ=2kπ-$\frac{π}{2}$,k∈Z;
又φ∈(-π,π),
∴φ=-$\frac{5π}{6}$,
∴函數(shù)f(x)的解析式為f(x)=2sin(2x-$\frac{5π}{6}$).
故答案為:f(x)=2sin(2x-$\frac{5π}{6}$).

點(diǎn)評(píng) 本題主要考查了根據(jù)函數(shù)y=Asin(ωx+φ)的部分圖象求解析式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,正方體AC1的棱長(zhǎng)為1,過點(diǎn)A作平面A1BD的垂線,垂足為點(diǎn)H.則以下命題中,真命題的編號(hào)是①②③(寫出所有真命題的編號(hào))
①點(diǎn)H是△A1BD的垂心    
②AH垂直平面CB1D1
③AH的延長(zhǎng)線經(jīng)過點(diǎn)C1
④直線AH和BB1所成角為45°
⑤平面A1BD與底面A1B1C1D1所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若奇函數(shù)f(x)=xcosx+c的定義域?yàn)閇a,b],則a+b+c=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C:x2+y2=1,過第一象限內(nèi)一點(diǎn)P(a,b)作圓C的兩條切線,且點(diǎn)分別為A、B,若∠APB=60°,O為坐標(biāo)原點(diǎn),則OP的長(zhǎng)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用5種不同顏色給圖中的4個(gè)區(qū)域涂色,每個(gè)區(qū)域涂1種顏色,相鄰區(qū)域不能同色,求不同的涂色方法共有多少種( 。
A.120B.150C.180D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.設(shè)g(x)=lnx+$\frac{m}{x}$,
(1)求a的值;
(2)對(duì)任意x1>x2>0,$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$<1恒成立,求實(shí)數(shù)m的取值范圍;
(3)討論方程g(x)=f(x)+ln(x+1)在[1,+∞)上根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)復(fù)數(shù)z滿足(1+i)•z=1-2i3(i為虛數(shù)單位),則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知水平放置的△ABC是按“斜二測(cè)畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=$\frac{\sqrt{3}}{2}$,那么原△ABC中∠ABC的大小是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案