日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
分析 (1)本題是一個古典概型,試驗發(fā)生包含的事件是從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有C62種情況,滿足條件的事件是抽到相鄰兩個月的數(shù)據(jù)的情況有5種,根據(jù)古典概型的概率公式得到結果.
(2)根據(jù)所給的數(shù)據(jù),求出x,y的平均數(shù),根據(jù)求線性回歸方程系數(shù)的方法,求出系數(shù)b,把b和x,y的平均數(shù),代入求a的公式,做出a的值,寫出線性回歸方程.
(3)根據(jù)所求的線性回歸方程,預報當自變量為10和6時的y的值,把預報的值同原來表中所給的10和6對應的值做差,差的絕對值不超過2,得到線性回歸方程理想.
解答 解:(1)設柚到相鄰兩個月的教據(jù)為事件A.因為從6組教據(jù)中選取2組教據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的其中,抽到相鄰兩個月份的教據(jù)的情況有5種,所以$P(A)=\frac{5}{15}=\frac{1}{3}$.
(2)由教據(jù)求得$\overline x=11,\overline y=24$,由公式求得$b=\frac{18}{7}$,再由$a=\overline y-b\overline x=-\frac{30}{7}$.
所以y關于x的線性回歸方程為$\widehaty=\frac{18}{7}x-\frac{30}{7}$.
(3)當x=10時,$\widehaty=\frac{150}{7},|{\frac{150}{7}-22}|<2$;同樣,當x=6時,$\widehaty=\frac{78}{7},|{\frac{78}{7}-12}|<2$,
所以該小組所得線性回歸方程是理想的.
點評 本題考查線性回歸方程的求法,考查了線性分析的應用,考查解決實際問題的能力,是一個綜合題目,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,則$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$ | |
B. | △ABC中,A>B是sinA>sinB的充分必要條件 | |
C. | 命題“若a=-1,則f(x)=ax2+2x-1只有一個零點”的逆命題為真 | |
D. | 設命題p:?x>0,x2>2x,則¬p:?x0≤0,x02≤2x0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com