15.某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)(i)若花店在某一天購進(jìn)16枝玫瑰花,當(dāng)天只賣了14枝,則該花店當(dāng)天的利潤為多少元?
(ii)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:
日需求量n14151617181920
頻數(shù)10201616151310
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列和數(shù)學(xué)期望.

分析 (1)(i)若花店在某一天購進(jìn)16枝玫瑰花,由當(dāng)天只賣了14枝,能求出該花店當(dāng)天的利潤為多少元.
(ii)當(dāng)n≥16時,求出利潤,當(dāng)n≤15時,求出利潤,由此能求出當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)X的可能取值為60,70,80,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

解答 (本小題滿分12分)
解(1)(i)若花店在某一天購進(jìn)16枝玫瑰花,
則該花店當(dāng)天的利潤為14×(10-5)-2×5=60元.(2分)
(ii)當(dāng)n≥16時,y=16×(10-5)=80,(3分)
當(dāng)n≤15時,y=5n-5(16-n)=10n-80,(4分)
得:y=$\left\{\begin{array}{l}{10n-80(n≤15)}\\{80(n≥16)}\end{array}\right.$,n∈N.(5分)
(2)X的可能取值為60,70,80,(6分)
P(X=60)=0.1,
P(X=70)=0.2,
P(X=80)=0.7,(9分)
X的分布列為:

X607080
P0.10.20.7
(10分)
EX=60×0.1+70×0.2+80×0.7=76.(12分)

點(diǎn)評 本題考查利潤、函數(shù)解析式、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,在歷年高考中都是必考題型之一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty$=bx+a;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計,按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:[0,5),[5,10),[10,15),[15,20),[20,25],得到如圖所示的頻率分布直方圖:

( I)寫出a的值;
( II)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取3人,并用X表示其中男生的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線2ax-by+2=0(a,b∈R)始終平分圓(x+1)2+(y-2)2=4的周長,則ab 的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的零點(diǎn);
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:y2=2px(p>0)與橢圓C':$\frac{x^2}{4}$+$\frac{{15{y^2}}}{16}$=1相交所得的弦長為2p.
(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)A,B是C上異于原點(diǎn)O的兩個不同點(diǎn),直線OA和OB的傾斜角分別為α和β,當(dāng)α,β變化且α+β為定值θ(tanθ=2)時,證明:直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在直線l:x+y-4=0任取一點(diǎn)M,過M且以$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的焦點(diǎn)為焦點(diǎn)作橢圓,則所作橢圓的長軸長的最小值為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式(x+2015)2f(x+2015)<16f(4)的解集為( 。
A.{x|x>-2015}B.{x|x<-2015}C.{x|-2015<x<-2011}D.{x|-2011<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=alnx-bx2,a,b∈R.若f(x)在x=1處與直線$y=-\frac{1}{2}$相切.
(1)求a,b的值;
(2)求f(x)在$[\frac{1}{e},e]$上的極值.

查看答案和解析>>

同步練習(xí)冊答案