已知直線l1:ax+2y+6=0與直線l2:x+(a-1)y+a2-1=0,若(1)l1∥l2;(2)l1⊥l2;(3)l1與l2相交;(4)l1與l2重合,分別求a的值.
考點(diǎn):直線的一般式方程
專題:直線與圓
分析:由兩直線方程的系數(shù)結(jié)合兩直線平行、垂直、相交、重合的條件逐一列式求得a的值.
解答: 解:由l1:ax+2y+6=0,l2:x+(a-1)y+a2-1=0.
(1)若l1∥l2,則
a(a-1)-2=0
a(a2-1)-6≠0
,解得:a=-1;
(2)若l1⊥l2,則a+2(a-1)=0,解得:a=
2
3
;
(3)若l1與l2相交,則a(a-1)-2≠0,解得:a≠-1,且a≠2;
(4)若l1與l2重合,
a(a-1)-2=0
a(a2-1)-6=0
,解得:a=2.
點(diǎn)評(píng):本題考查了直線的一般式方程與兩直線平行、垂直、相交、重合的關(guān)系,關(guān)鍵是對(duì)條件的記憶與應(yīng)用,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)向量
a
=(λ+2,λ2-cos2α)和
b
=(m,
m
2
+sinα),其中λ,m,α為實(shí)數(shù).若
a
=2
b
,則
λ
m
的取值范圍是( 。
A、[-1,6]
B、[-6,1]
C、(-∞,
20
9
]
D、[4,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某天,甲要去銀行辦理儲(chǔ)蓄業(yè)務(wù),已知銀行的營(yíng)業(yè)時(shí)間為9:00至17:00,設(shè)甲在當(dāng)天13:00至18:00之間任何時(shí)間去銀行的可能性相同,那么甲去銀行恰好能辦理業(yè)務(wù)的概率是( 。
A、
1
3
B、
3
4
C、
5
8
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,∠BAD=90°,AD∥BC,且A1A=AD=2BC=2,AB=1.點(diǎn)E在棱AB上,平面A1EC與棱C1D1相交于點(diǎn)F.
(Ⅰ)求證:A1F∥平面B1CE; 
(Ⅱ)求證:AC⊥平面CDD1C1;
(Ⅲ)寫出三棱錐B1-A1EF體積的取值范圍.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)的圖象是函數(shù)f(x)=sin2x-
3
cos2x的圖象向右平移
π
3
個(gè)單位得到的,則函數(shù)的圖象的對(duì)稱軸可以為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a2=2,Sn為其前n項(xiàng)和,且Sn=
an(n+1)
2
(n∈N*).
(1)求a1的值;
(2)求證:an=
n
n-1
an-1(n≥2);
(3)若bn=an•2 -an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(0,
π
2
)時(shí),函數(shù)h(x)=
1+2sin2x
sin2x
的最小值為b,若定義在R上的函數(shù)f(x)滿足對(duì)任意的x,y都有f(x+y)=f(x)+f(y)-b成立,設(shè)M,N分別為f(x)在[-b,b]上的最大值與最小值,則M+N的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2-x
x2-x+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,MA⊥平面ABCD,MA∥PB,PB=AB=2MA=2.
(1)P、C、D、M四點(diǎn)是否在同一平面內(nèi),為什么?
(2)求證:面PBD⊥面PAC;
(3)求直線BD和平面PMD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案