某天,甲要去銀行辦理儲蓄業(yè)務,已知銀行的營業(yè)時間為9:00至17:00,設(shè)甲在當天13:00至18:00之間任何時間去銀行的可能性相同,那么甲去銀行恰好能辦理業(yè)務的概率是( 。
A、
1
3
B、
3
4
C、
5
8
D、
4
5
考點:幾何概型
專題:
分析:設(shè)銀行的營業(yè)時間為x,甲去銀行的時間為y,以橫坐標表示銀行的營業(yè)時間,以縱坐標表示甲去銀行的時間,建立平面直角坐標系,求面積之比可得.
解答: 解:設(shè)銀行的營業(yè)時間為x,甲去銀行的時間為y,
以橫坐標表示銀行的營業(yè)時間,以縱坐標表示甲去銀行的時間,建立平面直角坐標系(如圖),
則甲去銀行恰好能辦理業(yè)務的事件構(gòu)成區(qū)域如圖示:
∴所求概率P=
5×8-
1
2
×4×4
5×8
=
4
5

故選:D
點評:本題考查幾何概型,準確作圖是解決問題的關(guān)鍵,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x,g(x)=-x2+2x+b(b∈R),記h(x)=f(x)-
1
f(x)

(1)判斷h(x)的奇偶性,并證明;
(2)f(x)在x∈[1,2]的上的最大值與g(x)在x∈[1,2]上的最大值相等,求實數(shù)b的值;
(3)若2xh(2x)+mh(x)≥0對于一切x∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=1,Sn是{an}的前n項和,且
Sn
=
Sn-1
+1(n≥2)
(1)求數(shù)列{an}的通項公式;
(2)若bn=an+2n-1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)(2x-1)5+(x+2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a0|+|a1|+|a2|+|a5|=( 。
A、242B、110
C、105D、82

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x
的定義域為集合A,a,b∈A
(1)判斷函數(shù)f(x)的奇偶性
(2)求證:f(a)+f(b)=f(
a+b
1+ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線x+y+2=0上點到原點的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滿足{3,4}⊆M⊆{0,1,2,3,4}的所有集合M的個數(shù)是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:ax+2y+6=0與直線l2:x+(a-1)y+a2-1=0,若(1)l1∥l2;(2)l1⊥l2;(3)l1與l2相交;(4)l1與l2重合,分別求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,P為雙曲線左支上的任意一點,若
|PF2|2
|PF1|
的最小值為9a,則雙曲線的離心率為(  )
A、2B、5C、3D、2或5

查看答案和解析>>

同步練習冊答案