【題目】如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點(diǎn),已知.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ) 先證明,再證明平面,利用面面垂直的判定定理,即可求證所求證;
(Ⅱ)根據(jù)題意以為軸、軸、軸建立空間直角坐標(biāo)系,求出平面和平面的向量,利用公式即可求解.
(Ⅰ)證:由已知得
又 平面,平面,,
而故,平面
平面,平面平面
(Ⅱ)由(Ⅰ)知,推理知梯形中,,,
有,又,故
所以相似,故有,即
所以,以為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,
則
,,,設(shè)平面的法向量為,則
令,則,是平面的一個(gè)法向量
設(shè)平面的一個(gè)法向量為
令,則
是平面的一個(gè)法向量
=
又二面角為鈍二面角,其余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.過去10日,A、B、C、D四地新增疑似病例數(shù)據(jù)信息如下:
A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2;
C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.
則以上四地中,一定符合沒有發(fā)生大規(guī)模群體感染標(biāo)志的是_______(填A、B、C、D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了調(diào)查小區(qū)成年居民對(duì)環(huán)境治理情況的滿意度(滿分按100計(jì)),隨機(jī)對(duì)20名六十歲以上的老人和20名十八歲以上六十歲以下的中青年進(jìn)行了不記名的問卷調(diào)查,得到了如下統(tǒng)計(jì)結(jié)果:
表1:六十歲以上的老人對(duì)環(huán)境治理情況的滿意度與頻數(shù)分布表
滿意度 | |||||
人數(shù) | 1 | 5 | 6 | 5 | 3 |
表2:十八歲以上六十歲以下的中青年人對(duì)環(huán)境治理情況的滿意度與頻數(shù)分布表
滿意度 | |||||
人數(shù) | 2 | 4 | 8 | 4 | 2 |
表3:
滿意度小于80 | 滿意度不小于80 | 合計(jì) | |
六十歲以上老人人數(shù) | |||
十八歲以上六十歲以下的中青年人人數(shù) | |||
合計(jì) |
(1)若該小區(qū)共有中青年人500人,試估計(jì)其中滿意度不少于80的人數(shù);
(2)完成表3的列聯(lián)表,并回答能否有的把握認(rèn)為“小區(qū)成年居民對(duì)環(huán)境治理情況的滿意度與年齡有關(guān)”?
(3)從表3的六十歲以上的老人“滿意度小于80”和“滿意度不小于80”的人數(shù)中用分層抽樣的方法抽取一個(gè)容量為5的樣本,再從中任取3人,求至少有兩人滿意小于80的概率.
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(diǎn)(1,),A,B分別為橢圓C的左、右頂點(diǎn),過左焦點(diǎn)F的直線l交橢圓C于D,E兩點(diǎn)(其中D在x軸上方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營的A型號(hào)二手汽車的使用年數(shù)x與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下數(shù)據(jù):
如圖是z關(guān)于x的折線圖:
(1)由折線圖可以看出,可以用線性回歸模型擬合z和x的關(guān)系,請(qǐng)用相關(guān)系數(shù)r加以說明(注:若相關(guān)系數(shù)︱r︱0.75,則認(rèn)為兩個(gè)變量相關(guān)程度較強(qiáng));
(2)求y關(guān)于x的回歸方程并預(yù)測(cè)某輛A型號(hào)二手車當(dāng)使用年數(shù)為9年時(shí)售價(jià)約為多少?(小數(shù)點(diǎn)后面保留兩位有效數(shù)字);
(3)基于成本的考慮,該型號(hào)二手車的售價(jià)不得低于7118元,請(qǐng)根據(jù)(2)求出的回歸方程預(yù)測(cè)在收購該型號(hào)的二手車時(shí)車輛的使用年限不得超過多少年?
參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
,
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中,m,n為常數(shù))
(1)當(dāng)時(shí),對(duì)有恒成立,求實(shí)數(shù)n的取值范圍;
(2)若曲線在處的切線方程為,函數(shù)的零點(diǎn)為,求所有滿足的整數(shù)k的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“斗拱”是中國古代建筑中特有的構(gòu)件,從最初的承重作用,到明清時(shí)期集承重與裝飾作用于一體.在立柱頂、額枋和檐檁間或構(gòu)架間,從枋上加的一層層探出成弓形的承重結(jié)構(gòu)叫拱拱與拱之間墊的方形木塊叫斗.如圖所示,是“散斗”(又名“三才升”)的三視圖(三視圖中的單位:分米),現(xiàn)計(jì)劃用一塊長方體的海南黃花梨木料加工成該散斗,則長方體木料的最小體積為( )立方分米.
A.40B.C.30D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn).求證:直線過定點(diǎn)并求出點(diǎn)的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com