【題目】在底面為菱形的四棱柱中,平面.

1)證明:平面;

2)求二面角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)由已知可證,即可證明結(jié)論;

2)根據(jù)已知可證平面,建立空間直角坐標(biāo)系,求出坐標(biāo),進(jìn)而求出平面和平面的法向量坐標(biāo),由空間向量的二面角公式,即可求解.

方法一:(1)依題意,,

∴四邊形是平行四邊形,∴

平面,平面,

平面.

2)∵平面,∴,

的中點(diǎn),∴,

平面

平面,

為原點(diǎn),分別以軸、軸、軸的正方向,

建立如圖所示的空間直角坐標(biāo)系,

,,,

設(shè)平面的法向量為,

,∴,取,則.

設(shè)平面的法向量為,

,∴,取,則.

,

設(shè)二面角的平面角為,則,

∴二面角的正弦值為.

方法二:(1)證明:連接于點(diǎn),

因?yàn)樗倪呅?/span>為平行四邊形,所以中點(diǎn),

又因?yàn)樗倪呅?/span>為菱形,所以中點(diǎn),

∴在中,,

平面,平面,

平面

2)略,同方法一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年起,全國(guó)各省市陸續(xù)實(shí)施了新高考,許多省市采用了“”的選科模式,即:考生除必考的語數(shù)外三科外,再?gòu)奈锢砘瘜W(xué)生物歷史地理政治六個(gè)學(xué)科中,任意選取三科參加高考,為了調(diào)查新高考中考生的選科情況,某地調(diào)查小組對(duì)某中學(xué)進(jìn)行了一次調(diào)查,研究考生選擇化學(xué)與選擇物理是否有關(guān).已知在調(diào)查數(shù)據(jù)中,選物理的考生與不選物理的考生人數(shù)相同,其中選物理且選化學(xué)的人數(shù)占選物理人數(shù)的,在不選物理的考生中,選化學(xué)與不選化學(xué)的人數(shù)比為

1)若在此次調(diào)查中,選物理未選化學(xué)的考生有100人,將選物理且選化學(xué)的人數(shù)占選化學(xué)總?cè)藬?shù)的比作為概率,從該中學(xué)選化學(xué)的考生中隨機(jī)抽取4人,記這4人中選物理且選擇化學(xué)的考生人數(shù)為,求的分布列(用排列數(shù)組合數(shù)表示即可)和數(shù)學(xué)期望.

2)若研究得到在犯錯(cuò)誤概率不超過001的前提下,認(rèn)為選化學(xué)與選物理有關(guān),則選物理且選化學(xué)的人數(shù)至少有多少?(單位:百人,精確到001)

附:,其中

0100

0050

0010

0001

2706

3841

6635

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,動(dòng)直線與橢圓交于點(diǎn),與軸交于點(diǎn).為坐標(biāo)原點(diǎn),中點(diǎn).

1)若,求的面積;

2)若試探究是否存在常數(shù),使得是定值?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解游客的情況,以便制定相應(yīng)的策略,在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)各10天的游客數(shù),畫出莖葉圖如圖:

1)若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,求xy的值;

2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù).今從這段時(shí)期中任取4天,記其中游客數(shù)超過120人的天數(shù)為,求概率;

3)現(xiàn)從如圖所示的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

設(shè)函數(shù)

(Ⅰ)若是函數(shù)的極值點(diǎn),1和的兩個(gè)不同零點(diǎn),且

,求的值;

(Ⅱ)若對(duì)任意, 都存在 為自然對(duì)數(shù)的底數(shù)),使得

成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.

1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:

A市居民

B市居民

喜歡楊樹

300

200

喜歡木棉樹

250

250

是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;

2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;

3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的路口,記總的選取方法數(shù)為,求證:.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,的中點(diǎn).

(Ⅰ)證明:∥平面

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加某個(gè)知識(shí)答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進(jìn)行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學(xué)各自從備選的5道不同題中隨機(jī)抽出3道題進(jìn)行答題,答對(duì)一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,已知甲能答對(duì)備選5道題中的每道題的概率都是,乙恰能答對(duì)備選5道題中的其中3道題;第一輪答題完畢后進(jìn)行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對(duì),繼續(xù)答下一題…,直到答錯(cuò),則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對(duì)繼續(xù)答第2題,如果第2題也答對(duì),繼續(xù)答第3題,直到他答錯(cuò)則換成乙坐莊開始答下一題,…直到乙答錯(cuò)再換成甲坐莊答題,依次類推兩人共計(jì)答完20道題游戲結(jié)束,假設(shè)由第一輪答題得分期望高的同學(xué)在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(xué)(最先答題的同學(xué))作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對(duì)其中每道題的概率都是,如果某位同學(xué)有機(jī)會(huì)答第道題且回答正確則該同學(xué)加10分,答錯(cuò)(不答視為答錯(cuò))則減5分,甲乙答題相互獨(dú)立;兩輪答題完畢總得分高者勝出.回答下列問題

1)請(qǐng)預(yù)測(cè)第二輪最先開始作答的是誰?并說明理由

2)①求第二輪答題中,;

②求證為等比數(shù)列,并求)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍;

2)若兩個(gè)極值點(diǎn),試判斷的大小關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案