【題目】如圖,四棱錐中,底面為直角梯形,∥,,,,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)若,求直線與平面所成角的正弦值.
【答案】(I)見解析;
(II)
【解析】
(Ⅰ)取BC的中點(diǎn)G,連接FG,EG,證明四邊形EGCD為平行四邊形,得EG∥平面ACD,再證明FG∥平面ACD,可得平面EFG∥平面ACD,從而得到EF∥平面ACD;
(Ⅱ)求解三角形證明BA⊥AE,取BE的中點(diǎn)H,連接AH,HC,證明AH⊥平面BCDE.以H為坐標(biāo)原點(diǎn),以過點(diǎn)H且平行于CD的直線為x軸,以過點(diǎn)H且平行于BC的直線為y軸,HA所在直線為z軸建立空間直角坐標(biāo)系,求出平面ACD的一個(gè)法向量,再求出直線BC的方向向量,由兩向量所成角的余弦值可得直線BC與平面ACD所成角的正弦值.
解:證明:(I)作中點(diǎn),連接,則,
又,四邊形為平行四邊形,
故,則平面,
又為的中點(diǎn),,則平面,
又,平面平面,
平面,
平面
(II),,,,
,則,
又,,則,
作中點(diǎn),連接,,
,,
又,,即,
又,平面.
以為坐標(biāo)原點(diǎn),以過點(diǎn)且平行于的直線為軸,以過點(diǎn)且平行于的直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,
可得,,,,
,
設(shè)為平面的一個(gè)法向量,
則即
可得,
直線的方向向量,
設(shè)與平面所成角為,
則,
綜上,直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,得到甲、乙兩位學(xué)生成績的莖葉圖.
(1)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,對預(yù)賽成績的平均值和方差進(jìn)行分析,你認(rèn)為哪位學(xué)生的成績更穩(wěn)定?請說明理由;
(2)若將頻率視為概率,求乙同學(xué)在一次數(shù)學(xué)競賽中成績高于84分的概率;
(3)求在甲同學(xué)的8次預(yù)賽成績中,從不小于80分的成績中隨機(jī)抽取2個(gè)成績,列出所有結(jié)果,并求抽出的2個(gè)成績均大于85分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)為何值時(shí),軸為曲線的切線;
(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列和等比數(shù)列中, ,,是前項(xiàng)和.
(1)若 ,求實(shí)數(shù)的值;
(2)是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;
(3)是否存在正實(shí)數(shù),使得數(shù)列中至少有三項(xiàng)在數(shù)列中,但中的項(xiàng)不都在數(shù)列中?若存在,求出一個(gè)可能的的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,討論函數(shù)的單調(diào)性;
(Ⅱ)若方程沒有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓是橢圓內(nèi)任一點(diǎn).設(shè)經(jīng)過的兩條不同直線分別于橢圓交于點(diǎn)記的斜率分別為
(1)當(dāng)經(jīng)過橢圓右焦點(diǎn)且為中點(diǎn)時(shí),求:
①橢圓的標(biāo)準(zhǔn)方程;
②四邊形面積的取值范圍.
(2)當(dāng)時(shí),若點(diǎn)重合于點(diǎn),且.求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高中學(xué)生對數(shù)學(xué)課是否喜愛是否和性別有關(guān),隨機(jī)調(diào)查220名高中學(xué)生,將他們的意見進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表.
喜愛數(shù)學(xué)課 | 不喜愛數(shù)學(xué)課 | 合計(jì) | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合計(jì) | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷,能否有的把握認(rèn)為“喜愛數(shù)學(xué)課與性別”有關(guān);
(2)為培養(yǎng)學(xué)習(xí)興趣,從不喜愛數(shù)學(xué)課的學(xué)生中進(jìn)行進(jìn)一步了解,從上述調(diào)查的不喜愛數(shù)學(xué)課的人員中按分層抽樣抽取6人,再從這6人中隨機(jī)抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1名“男生”的概率.
參考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.
(1)求拋物線的方程;
(2)過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com