【題目】已知函數(shù),.
(1)當(dāng)為何值時(shí),軸為曲線的切線;
(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).
【答案】(1);(2)見解析.
【解析】
(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;
(2)令,,然后對(duì)實(shí)數(shù)進(jìn)行分類討論,結(jié)合和的符號(hào)來確定函數(shù)的零點(diǎn)個(gè)數(shù).
(1),,
設(shè)曲線與軸相切于點(diǎn),則,
即,解得.
所以,當(dāng)時(shí),軸為曲線的切線;
(2)令,,
則,,由,得.
當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).
,.
①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);
②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);
③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);
④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);
⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).
綜上所述,當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn);
當(dāng)或時(shí),函數(shù)有兩個(gè)零點(diǎn);
當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)(為自然對(duì)數(shù)的底數(shù)),時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|2x+4|+|x-3|.
(1)解關(guān)于x的不等式f(x)<8;
(2)對(duì)于正實(shí)數(shù)a,b,函數(shù)g(x)=f(x)-3a-4b只有一個(gè)零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,動(dòng)直線與橢圓交于點(diǎn),與軸交于點(diǎn).為坐標(biāo)原點(diǎn),是中點(diǎn).
(1)若,求的面積;
(2)若試探究是否存在常數(shù),使得是定值?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).
求證:(1)直線平面EFG;
(2)直線平面SDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解游客的情況,以便制定相應(yīng)的策略,在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)各10天的游客數(shù),畫出莖葉圖如圖:
(1)若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,求x,y的值;
(2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù).今從這段時(shí)期中任取4天,記其中游客數(shù)超過120人的天數(shù)為,求概率;
(3)現(xiàn)從如圖所示的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)函數(shù)
(Ⅰ)若是函數(shù)的極值點(diǎn),1和是的兩個(gè)不同零點(diǎn),且
且,求的值;
(Ⅱ)若對(duì)任意, 都存在( 為自然對(duì)數(shù)的底數(shù)),使得
成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為直角梯形,∥,,,,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(mR)的導(dǎo)函數(shù)為.
(1)若函數(shù)存在極值,求m的取值范圍;
(2)設(shè)函數(shù)(其中e為自然對(duì)數(shù)的底數(shù)),對(duì)任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com