【題目】下列說法中正確的是_____________ .(填序號(hào))

①棱柱的面中,至少有兩個(gè)面互相平行;

以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐;

用一個(gè)平面去截圓錐,得到一個(gè)圓錐和一個(gè)圓臺(tái);

有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱;

⑤圓錐的頂點(diǎn)與底面圓周上任意一點(diǎn)的連線是圓錐的母線.

【答案】①⑤

【解析】

逐一考查所給命題是否正確即可.

逐一考查所給命題:

①棱柱的面中,至少有上下兩個(gè)底面互相平行,原命題正確;

②以直角三角形的一邊直角邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐,原命題錯(cuò)誤;

③用一個(gè)平行于底面的平面去截圓錐,得到一個(gè)圓錐和一個(gè)圓臺(tái),原命題錯(cuò)誤;

④如圖所示,有兩個(gè)面平行,其余各面都是平行四邊形的幾何體不一定是棱柱,原命題錯(cuò)誤;

⑤圓錐的頂點(diǎn)與底面圓周上任意一點(diǎn)的連線是圓錐的母線,原命題正確.

綜上可得:所給說法中正確的是①⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{xn}滿足x1=0,xn+1=﹣x2n+xn+c(n∈N*).
(Ⅰ)證明:{xn}是遞減數(shù)列的充分必要條件是c<0;
(Ⅱ)求c的取值范圍,使{xn}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

y(微克)

x(千克)

3

38

11

10

374

-121

-751

其中

(I)根據(jù)散點(diǎn)圖判斷,,哪一個(gè)適宜作為蔬菜農(nóng)藥殘量與用水量的回歸方程類型(給出判斷即可,不必說明理由);

(Ⅱ)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程,求出的回歸方程.(c,d精確到0.1)

(Ⅲ)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時(shí)對(duì)人體無害,為了放心食用該蔬菜,請(qǐng)估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))

附:參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是________(填序號(hào)).

①若,分別是平面α,β的一個(gè)法向量,則α∥β;

②若分別是平面α,β的一個(gè)法向量,則α⊥β·=0;

③若是平面α的一個(gè)法向量,與平面α共面,則·=0;

④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長AB=AD=2,AA1=3的長方體ABCDA1B1C1D1中,點(diǎn)E是平面BCC1B1上的動(dòng)點(diǎn),點(diǎn)F是CD的中點(diǎn).試確定點(diǎn)E的位置,使D1E⊥平面AB1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: , 左右焦點(diǎn)分別為F1 , F2 , 過F1的直線l交橢圓于A,B兩點(diǎn),若|BF2|+|AF2|的最大值為5,則b的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對(duì)稱點(diǎn).
(1)若a,b,c∈R,證明函數(shù)f(x)=ax3+bx2+cx﹣b必有局部對(duì)稱點(diǎn);
(2)是否存在常數(shù)m,使得函數(shù)f(x)=4x﹣m2x+1+m2﹣3有局部對(duì)稱點(diǎn)?若存在,求出m的范圍,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x+sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD為圓O的直徑,直線BA與圓O相切于點(diǎn)A,直線OB與弦AC垂直并相交于點(diǎn)G,與弧AC相交于M,連接DC,AB=10,AC=12.
(1)求證:BADC=GCAD;
(2)求BM.

查看答案和解析>>

同步練習(xí)冊(cè)答案