1.已知函數(shù)y=f(x)(x∈R)的圖象過點(diǎn)(1,0),f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),e為自然對(duì)數(shù)的底數(shù),若x>0時(shí),xf'(x)>1恒成立,則不等式f(x)≤lnx的解集是(0,1].

分析 構(gòu)造函數(shù)g(x)=f(x)-lnx(x>0),確定g(x)=f(x)-lnx在(0,+∞)上單調(diào)遞增,f(x)≤lnx,化為g(x)≤0=g(1),即可得出結(jié)論.

解答 解:構(gòu)造函數(shù)g(x)=f(x)-lnx(x>0),
則g′(x)=f′(x)-$\frac{1}{x}$=$\frac{xf′(x)-1}{x}$>0,
∴g(x)=f(x)-lnx在(0,+∞)上單調(diào)遞增,
∵f(x)≤lnx,
∴g(x)≤0=g(1),
∴0<x≤1,
故答案為:(0,1].

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,正確構(gòu)造函數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=2x-1的值域是( 。
A.(-∞,1)B.(-∞,0)∪(0,+∞)C.(-1,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x+1},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,則f(f(3))=(  )
A.$\frac{4}{3}$B.$\frac{2}{3}$C.$-\frac{4}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐B-ACD的每個(gè)頂點(diǎn)都在表面積為16π的球O的球面上,且AB⊥平面BCD,△BCD為等邊三角形,AB=2BC,則三棱錐B-ACD的體積為( 。
A.3B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線l:y=kx(k>0),圓C1:(x-1)2+y2=1與C2:(x-3)2+y2=1,若直線l被圓C1,C2所截得兩弦的長度之比是3,則實(shí)數(shù)k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè){an}是等比數(shù)列,且a1=$\frac{3}{2}$,S3=$\frac{9}{2}$,則它的通項(xiàng)公式為an=( 。
A.$\frac{3}{2}$•($\frac{1}{2}$)n-1B.$\frac{3}{2}•{({-\frac{1}{2}})^{n-2}}$C.$\frac{3}{2}$•(-$\frac{1}{2}$)n-2D.$\frac{3}{2}$•(-2)n-1或$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題p:?x0∈R,x0>1的否定是( 。
A.¬p:?x∈R,x≤1B.¬p:?x∈R,x≤1C.¬p:?x∈R,x<1D.¬p:?x∈R,x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平面內(nèi)兩點(diǎn)A(8,-6),B(2,2).
(1)求AB的中垂線l的方程;
(2)一束光線從B點(diǎn)射向y軸,若反射光線恰好經(jīng)過點(diǎn)A,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.等差數(shù)列{an}中a2=5,a6=21.
(1)求{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)設(shè)${b_n}=\frac{2}{{{S_n}+5n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案