【題目】已知△ABC的三個內(nèi)角A,B,C對應(yīng)的邊長分別為a,b,c,向量m=(sinB,1﹣cosB)與向量n=(2,0)的夾角θ的余弦值為.
(1)求角B的大;
(2)若b=,求a+c的取值范圍.
【答案】(1); (2) .
【解析】
(1)由向量m=(sinB,1-cosB),向量n=(2,0)可求得cosθ=,即可求角B的大小;
(2)由余弦定理,得b2=a2+c2-2accosπ=a2+c2+ac,結(jié)合重要不等式可知b2=(a+c)2-ac≥(a+c)2-=(a+c)2,給出b=即可求得a+c的取值范圍.
(1)∵m=(sinB,1-cosB),n=(2,0),∴m·n=2sinB,
|m|= .
∵0<B<π,∴0<<.∴sin>0.
∴|m|=2sin.
又∵|n|=2,
∴cosθ= .
∴,∴B=.
(2)由余弦定理,得b2=a2+c2-2accosπ=a2+c2+ac=(a+c)2-ac≥(a+c)2-=(a+c)2,當(dāng)且僅當(dāng)a=c時,取等號.∴(a+c)2≤4,即a+c≤2.
又a+c>b=,∴a+c∈(,2].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計(jì)劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個周期內(nèi)的圖象時,列出了如表并給出了部分?jǐn)?shù)據(jù):
0 | π | ||||
x | |||||
0 | 2 | 0 | 0 |
(1)請根據(jù)上表數(shù)據(jù),寫出函數(shù)的解析式;(直接寫出結(jié)果即可)
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè),已知函數(shù)在區(qū)間上的最大值是img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/20/139c9676/SYS202011262014544768390673_ST/SYS202011262014544768390673_ST.013.png" width="24" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,求t的值以及函數(shù)在區(qū)間[上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)數(shù)滿足f(x)+x>對x∈R恒成立,且實(shí)數(shù)x,y滿足xf(x)﹣yf(y)>f(y)﹣f(x),則下列關(guān)系式恒成立的是( )
A.B.ln(x2+1)>ln(y2+1)
C.D.x﹣y>sinx﹣siny
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2ax3(a>0),x∈R.若對任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)f(x2)=1,則a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最值;
(2)若,當(dāng)有兩個極值點(diǎn)時,總有,求此時實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在2013年的自主招生考試成績中隨機(jī)抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)?/span>“優(yōu)秀”的學(xué)生才能獲得面試資格.
(1)求出第4組的頻率,并補(bǔ)全頻率分布直方圖;
(2)根據(jù)樣本頻率分布直方圖估計(jì)樣本的中位數(shù)與平均數(shù);
(3)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項(xiàng)作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com