【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計(jì)算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是國家統(tǒng)計(jì)局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費(fèi)價(jià)格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.2019年12月份,全國居民消費(fèi)價(jià)格環(huán)比持平
B.2018年12月至2019年12月全國居民消費(fèi)價(jià)格環(huán)比均上漲
C.2018年12月至2019年12月全國居民消費(fèi)價(jià)格同比均上漲
D.2018年11月的全國居民消費(fèi)價(jià)格高于2017年12月的全國居民消費(fèi)價(jià)格
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(,t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直角坐標(biāo)系下直線與曲線的普通方程;
(2)設(shè)直線與曲線交于點(diǎn)、(二者可重合),交軸于,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動(dòng),當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號(hào)抽獎(jiǎng)的方式,抽取了家店鋪進(jìn)行紅包獎(jiǎng)勵(lì).如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.
(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;
(2)估計(jì)抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;
(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進(jìn)行銷售研究,求抽取的店鋪銷售額在中的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應(yīng)上級(jí)部門的號(hào)召,通過沿街電子屏、微信公眾號(hào)等各種渠道對此戰(zhàn)“疫”進(jìn)行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強(qiáng)戰(zhàn)勝疫情的信心. 為了檢驗(yàn)大家對新冠狀病毒及防控知識(shí)的了解程度,該市推出了相關(guān)的知識(shí)問卷,隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關(guān)知識(shí)了解全面,“中老年人”中對防控的相關(guān)知識(shí)了解全面和不夠全面的人數(shù)之比是2:1.
(1)求圖中的值;
(2)現(xiàn)采取分層抽樣在和中隨機(jī)抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計(jì)結(jié)果判斷:能夠有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加了解防控的相關(guān)知識(shí)?
了解全面 | 了解不全面 | 合計(jì) | |
青少年人 | |||
中老年人 | |||
合計(jì) |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小麗在同一城市開的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調(diào)劑1人到該店維持營業(yè),否則該店就停業(yè).
(1)求發(fā)生調(diào)劑現(xiàn)象的概率;
(2)設(shè)營業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為(為參數(shù)).
(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(2)若為曲線上的動(dòng)點(diǎn),求的中點(diǎn)到直線: 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com