A. | [1,2) | B. | (1,2] | C. | [$\frac{4}{3}$,2) | D. | ($\frac{4}{3}$,2] |
分析 根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=-x+2b,x∈(b,2b],又因為f(x)=k(x-1)的函數(shù)圖象是過定點(1,0)的直線,再結(jié)合函數(shù)的圖象根據(jù)題意求出參數(shù)k的范圍即可.
解答 解:定義在區(qū)間(1,+∞)內(nèi)的函數(shù)f(x)滿足下列兩個條件:
①對任意的x∈(1,+∞),恒有f(2x)=2f(x)成立;
②當(dāng)x∈(1,2]時,f(x)=2-x.
函數(shù)的解析式為:f(x)=-x+2b,x∈(b,2b],
直線y=m(x-1)過定點M(1,0),畫出f(x)在(1,+∞)上的部分圖象如圖,得A(2,2)、B(4,4).
又kMB=$\frac{4}{3}$,kMA=2.
由題意得f(x)=m(x-1)的函數(shù)圖象是過定點(1,0)的直線,
如圖所示紅色的直線與線段AB相交即可(可以與B點重合但不能與A點重合)
分析圖象知,當(dāng)$\frac{4}{3}$≤m<2時f(x)=m(x-1)有兩個不同的解.
故選:C.
點評 解決此類問題的關(guān)鍵是熟悉求函數(shù)解析式的方法以及函數(shù)的圖象與函數(shù)的性質(zhì),數(shù)形結(jié)合思想是高中數(shù)學(xué)的一個重要數(shù)學(xué)數(shù)學(xué),是解決數(shù)學(xué)問題的必備的解題工具.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
甲 | 乙 | 丙 | 丁 | |
平均環(huán)數(shù)$\overline{x}$ | 8.3 | 8.8 | 8.8 | 8.7 |
方差s2 | 3.5 | 3.6 | 2.2 | 5.4 |
A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{2}$ | B. | x=$\frac{π}{4}$ | C. | x=0 | D. | x=$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.02 | B. | 0.04 | C. | 0.48 | D. | 0.49 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>a>c | B. | a>b>c | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com