【題目】設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為1的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)點M為該橢圓上任意一點,求|MA|的取值范圍.

【答案】(1) 離心率e (2) 的取值范圍為[0, ].

【解析】試題分析:(1)由△AB1B2是面積為1的等腰直角三角形知|OA|=|OB1|=1,從而求a,b,c即可;(2)求點點距離,設出點坐標M的坐標為(x0,y0),再二元化一元即可;

(1)設所求橢圓的標準方程為 (a>b>0) (a>b>0),右焦點為F2(c,0).

因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2為直角,因此|OA|=|OB2|,得b ,結(jié)合c2a2b2得4b2a2b2,故a2=5b2,c2=4b2,

所以離心率e .

在Rt△AB1B2中,OAB1B2,故SAB1B2 ·|B1B2|·|OA|=|OB2|·|OA|=·bb2.

由題設條件SAB1B2=2得b2=1,從而a2=5b2=5,

因此所求橢圓的標準方程為.

(2)A (0,1).

設點M的坐標為(),因為點M為橢圓上任意一點,代入橢圓 =5-5 .所以

因為-1≤y0≤1,所以

所以的取值范圍為[0, ].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,設邊a,b,c所對的角為A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2
(1)若b+c=5,求b,c的值;
(2)若 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Cx2y2+2x-4y+3=0.

(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.

(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的方程是,則經(jīng)過圓上一點的切線方程( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,定圓C的半徑為4,A為圓C上的一個定點,B為圓C上的動點,若點A,B,C不共線,且 對任意的t∈(0,+∞)恒成立,則 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 是自然對數(shù)的底數(shù)).

1)當時,求曲線在點處的切線方程;

(2)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin cos +sin2 (ω>0,0<φ< ).其圖象的兩個相鄰對稱中心的距離為 ,且過點( ,1).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c.已知 = .且f(A)= ,求角C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校為了解學生在課外讀物方面的支出情況,抽取了n名同學進行調(diào)查,結(jié)果顯示這些同學的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學有67人,其頻率分布直方圖如圖所示,則n的值為(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店銷售剛剛上市的某知名品牌的高三數(shù)學單元卷,按事先擬定的價格進行5天試銷,每種單價試銷1天,得到如下數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

1)求試銷5天的銷量的方差和的回歸直線方程;

2)預計今后的銷售中,銷量與單價服從(1)中的回歸方程,已知每冊單元卷的成本是14元,為了獲得最大利潤,該單元卷的單價卷的單價應定為多少元?

(附:

查看答案和解析>>

同步練習冊答案