【題目】在△ABC中,設邊a,b,c所對的角為A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2
(1)若b+c=5,求b,c的值;
(2)若 ,求△ABC面積的最大值.

【答案】
(1)解:∵

,

∵△ABC不是直角三角形,

∴bc=4,

又∵b+c=5,

∴解得


(2)解:∵ ,由余弦定理可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,

,所以

∴△ABC面積的最大值是 ,當 時取到


【解析】(1)由已知利用余弦定理化簡已知等式可得 ,又△ABC不是直角三角形,解得bc=4,又b+c=5,聯(lián)立即可解得b,c的值.(2)由余弦定理,基本不等式可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,解得 ,可求 ,利用三角形面積公式即可得解三角形面積的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,⊥平面,且四邊形是平行四邊形.

(1)求證:;

(2)當點的什么位置時,使得∥平面,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第十三屆全運會將2017年9月在天津舉行,組委會在2017年1月對參加接待服務的10名賓館經理進行為期半月的培訓,培訓結束,組織了一次培訓結業(yè)測試,10人考試成績如下(滿分100分):

75 84 65 90 88 95 78 85 98 82

(Ⅰ)以成績的十位為莖、個位為葉作出本次結業(yè)成績的莖葉圖,并計算平均成績與成績的中位數(shù) ;

(Ⅱ)從本次成績在85分以上(含85分)的學員中任選2人,2人成績都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,DA⊥AB,

DE1,EC,EA2,

∠ADC,∠BEC.

(Ⅰ)sin∠CED的值;

(Ⅱ)BE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),對于下列四個命題:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE, ,F(xiàn)為線段DE上的一點.

(1)求證:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F與二面角F﹣BC﹣D的大小相等,求DF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且點PAD的中點,點QSB的中點.

(1)求證:CD⊥平面SAD

(2)求證:PQ∥平面SCD

(3)若SASD,點MBC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,一個動圓截直線所得的弦長分別為8,4.

(1)求動圓圓心的軌跡方程;

(2)在軌跡上是否存在這樣的點:它到點的距離等于到點的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為1的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)點M為該橢圓上任意一點,求|MA|的取值范圍.

查看答案和解析>>

同步練習冊答案