已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是過橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點(diǎn).
(i)若為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)在橢圓上運(yùn)動時,求點(diǎn)的軌跡方程;
(ii)若與橢圓的交點(diǎn),求的面積的最小值.

(1);(2) (i),(ii)

解析試題分析:(1)由題意得 又,解得,.因此所求橢圓的標(biāo)準(zhǔn)方程為.                               ……4分
(2)(i)假設(shè)所在的直線斜率存在且不為零,設(shè)所在直線方程為,.解方程組,,
所以.               ……6分
設(shè),由題意知,所以,即,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8c/a/ovyg8.png" style="vertical-align:middle;" />是的垂直平分線,所以直線的方程為,即,因此,              ……8分
,所以,故
又當(dāng)或不存在時,上式仍然成立.
綜上所述,的軌跡方程為.                    ……10分
(ii)當(dāng)存在且時,由(1)得,,
解得,        
所以
,.                     ……12分
由于
,當(dāng)且僅當(dāng)時等號成立,即時等號成立,此時面積的最小值是.……14分
當(dāng),.當(dāng)不存在時,.綜上所述,的面積的最小值為.……16分
解法二:
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/2/1kq1z3.png" style="vertical-align:middle;" />
,,
當(dāng)且僅當(dāng)時等號成立,即時等號成立,
此時面積的最小值是
當(dāng),
當(dāng)不存在時,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓方程為,左、右焦點(diǎn)分別是,若橢圓上的點(diǎn)的距離和等于
(Ⅰ)寫出橢圓的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)是橢圓的動點(diǎn),求線段中點(diǎn)的軌跡方程;
(Ⅲ)直線過定點(diǎn),且與橢圓交于不同的兩點(diǎn),若為銳角(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動點(diǎn),且直線AP與BP的斜率之積等于.

(Ⅰ)求動點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)直線AP和BP分別與直線交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.

(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點(diǎn),,且(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連結(jié)AD、BD得到
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)過點(diǎn)作直線與拋物線相交于兩點(diǎn),圓

(1)若拋物線在點(diǎn)處的切線恰好與圓相切,求直線的方程;
(2)過點(diǎn)分別作圓的切線,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過點(diǎn)(1,),離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線xy+1=0與橢圓E相交于A、B(BA上方)兩點(diǎn),問是否存在直線l,使l與橢圓相交于C、D(CD上方)兩點(diǎn)且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)直線與直線交于點(diǎn).
(1)當(dāng)直線點(diǎn),且與直線垂直時,求直線的方程;
(2)當(dāng)直線點(diǎn),且坐標(biāo)原點(diǎn)到直線的距離為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓及直線
(1)當(dāng)為何值時,直線與橢圓有公共點(diǎn)?
(2)若直線被橢圓截得的弦長為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案