(Ⅰ) (Ⅱ) [).

解析試題分析:(Ⅰ) 設(shè)F2(c,0),則
,
所以
c=1.
因?yàn)殡x心率e=,所以
a=
所以橢圓C的方程為
.     
(Ⅱ) 當(dāng)直線AB垂直于x軸時,直線AB方程為x=-,此時P(,0)、Q(,0)

當(dāng)直線AB不垂直于x軸時,設(shè)直線AB的斜率為k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
 得
(x1+x2)+2(y1+y2)=0,
則-1+4mk=0,
故k=
此時,直線PQ斜率為,PQ的直線方程為

即     
聯(lián)立 消去y,整理得
.所以
,
于是
(x1-1)(x2-1)+y1y2
 



令t=1+32m2,1<t<29,則

又1<t<29,所以

綜上,的取值范圍為[,).
考點(diǎn):直線與橢圓的位置關(guān)系 橢圓的幾何性質(zhì)
點(diǎn)評:本題主要考查橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系等基礎(chǔ)知識,同時考查解析幾何的基本思想方法和綜合解題能力。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,右焦點(diǎn)為(,0),斜率為1的直線與橢圓G交與A、B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為
(1)求橢圓G的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率,過點(diǎn)的直線與原點(diǎn)的距離為。⑴求橢圓的方程;⑵已知定點(diǎn),若直線與橢圓交于兩點(diǎn),問:是否存在的值,使以為直徑的圓過點(diǎn)?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),點(diǎn),直線都是圓的切線(點(diǎn)不在軸上)。
⑴求過點(diǎn)且焦點(diǎn)在軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點(diǎn)作直線與⑴中的拋物線相交于、兩點(diǎn),問是否存在定點(diǎn),使.為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖橢圓的兩個焦點(diǎn)為和頂點(diǎn)、構(gòu)成面積為32的正方形.

(1)求此時橢圓的方程;
(2)設(shè)斜率為的直線與橢圓相交于不同的兩點(diǎn)、的中點(diǎn),且. 問:、兩點(diǎn)能否關(guān)于直線對稱. 若能,求出的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率,過橢圓的右焦點(diǎn)且垂直于長軸的弦長為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線與橢圓相交于兩點(diǎn),且坐標(biāo)原點(diǎn)到直線的距離為,的大小是否為定值?若是求出該定值,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點(diǎn)A,B;O為坐標(biāo)原點(diǎn)。
(1)若,試探究在曲線C上僅存在幾個點(diǎn)到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是過橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點(diǎn).
(i)若為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)在橢圓上運(yùn)動時,求點(diǎn)的軌跡方程;
(ii)若與橢圓的交點(diǎn),求的面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案