已知函數(shù)
,其中
是自然對數(shù)的底數(shù),
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,試確定函數(shù)
的零點個數(shù),并說明理由.
(Ⅰ)
的單調(diào)減區(qū)間為
;單調(diào)增區(qū)間為
;(Ⅱ)詳見解析.
試題分析:(Ⅰ)求導(dǎo)得,
,因為
,所以
的解集為
,即單調(diào)遞增區(qū)間;
的解集為
,即單調(diào)遞減區(qū)間;(Ⅱ)函數(shù)
,令
,得
,顯然
是一個零點,記
,求導(dǎo)得
,易知
時
遞減;
時
遞增,故
的最小值
,又
,故
,即
,所以函數(shù)
的零點個數(shù)1個.
試題解析:(Ⅰ)解:因為
,
,所以
.
令
,得
.當(dāng)
變化時,
和
的變化情況如下:
故
的單調(diào)減區(qū)間為
;單調(diào)增區(qū)間為
.
(Ⅱ)解:結(jié)論:函數(shù)
有且僅有一個零點. 理由如下:
由
,得方程
, 顯然
為此方程的一個實數(shù)解.
所以
是函數(shù)
的一個零點. 當(dāng)
時,方程可化簡為
.設(shè)函數(shù)
,則
,令
,得
.
當(dāng)
變化時,
和
的變化情況如下:
即
的單調(diào)增區(qū)間為
;單調(diào)減區(qū)間為
.所以
的最小值
.
因為
,所以
,所以對于任意
,
,因此方程
無實數(shù)解.所以當(dāng)
時,函數(shù)
不存在零點.綜上,函數(shù)
有且僅有一個零點. 考點:
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)若
,求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)
圖象上任意一點的切線
的斜率為
,當(dāng)
的最小值為1時,求此時切線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知a,b為常數(shù),a¹0,函數(shù)
.
(1)若a=2,b=1,求
在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:
在區(qū)間[1,2]上是增函數(shù);
②若
,
,且
在區(qū)間[1,2]上是增函數(shù),求由所有點
形成的平面區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
(其中
為常數(shù));
(Ⅰ)如果函數(shù)
和
有相同的極值點,求
的值;
(Ⅱ)設(shè)
,問是否存在
,使得
,若存在,請求出實數(shù)
的取值范圍;若不存在,請說明理由.
(Ⅲ)記函數(shù)
,若函數(shù)
有5個不同的零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
為常數(shù)),其圖象是曲線
.
(1)當(dāng)
時,求函數(shù)
的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)
的導(dǎo)函數(shù)為
,若存在唯一的實數(shù)
,使得
與
同時成立,求實數(shù)
的取值范圍;
(3)已知點
為曲線
上的動點,在點
處作曲線
的切線
與曲線
交于另一點
,在點
處作曲線
的切線
,設(shè)切線
的斜率分別為
.問:是否存在常數(shù)
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,f '(x)為f(x)的導(dǎo)函數(shù),若f '(x)是偶函數(shù)且f '(1)=0.
⑴求函數(shù)
的解析式;
⑵若對于區(qū)間
上任意兩個自變量的值
,都有
,求實數(shù)
的最小值;
⑶若過點
,可作曲線
的三條切線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
某連鎖分店銷售某種商品,每件商品的成本為
元,并且每件商品需向總店交
元的管理費,預(yù)計當(dāng)每件商品的售價為
元時,一年的銷售量為
萬件.
(1)求該連鎖分店一年的利潤
(萬元)與每件商品的售價
的函數(shù)關(guān)系式
;
(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤
最大,并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
定義在R上的函數(shù)
滿足:
恒成立,若
,則
與
的大小關(guān)系為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點P是函數(shù)
圖象上任意一點,且在點P處切線的傾斜角為
,則
的最小值是( )
查看答案和解析>>