分析 先將原極坐標(biāo)方程ρ=2sinθ與ρcosθ=-1化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程求出交點(diǎn),最后再轉(zhuǎn)化成極坐標(biāo).
解答 解:∵曲線ρcosθ=-1,∴曲線的直角坐標(biāo)方程為x=-1,
∵曲線ρ=2sinθ,∴曲線的直角坐標(biāo)方程為x2+y2=2y,
聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{{x}^{2}+{y}^{2}=2y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
$ρ=\sqrt{1+1}=\sqrt{2}$,$θ=\frac{3π}{4}$,
∴曲線ρcosθ=-1與曲線ρ=2sinθ的交點(diǎn)的極坐標(biāo)為$(\sqrt{2},\frac{3}{4}π)$.
故答案為:$(\sqrt{2},\frac{3}{4}π)$.
點(diǎn)評(píng) 本題考查兩條曲線的交點(diǎn)的極坐標(biāo)的求法,考查直角坐標(biāo)方程、極坐標(biāo)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 增加了1項(xiàng) | B. | 增加了2項(xiàng) | C. | 增加了2k項(xiàng) | D. | 增加了2k+1項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | kπ,k∈z | B. | (2k+1)π,k∈z | C. | 2kπ+$\frac{π}{2}$,k∈z | D. | kπ+$\frac{π}{2}$,k∈z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,3) | B. | (-∞,-2)∪(3,+∞) | C. | [-2,3] | D. | (-∞,-3)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{y}^{2}}{4}$-x2=1 | D. | y2-$\frac{{x}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com