分析 (Ⅰ)an+1=λSn+1(n∈N*),可得an=λSn-1+1(n≥2),相減可得:an+1=(λ+1)an(n≥2),λ+1≠0,利用等比數(shù)列的通項(xiàng)公式即可得出.
(Ⅱ)由${a_3}={(λ+1)^2}$,且a1、2a2、a3+3成等差數(shù)列.可得4(λ+1)=1+(λ+1)2+3,解得λ=1,可得an,進(jìn)而得到bn.再利用等比數(shù)列的求和公式即可得出.
解答 (Ⅰ)證明:∵an+1=λSn+1(n∈N*),∴an=λSn-1+1(n≥2),
∴an+1-an=λan,即an+1=(λ+1)an(n≥2),λ+1≠0,
又a1=1,a2=λS1+1=λ+1,
∴數(shù)列{an}是以1為首項(xiàng),公比為λ+1的等比數(shù)列,
(Ⅱ)解:∵${a_3}={(λ+1)^2}$,且a1、2a2、a3+3成等差數(shù)列.
∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,得λ=1,
∴${a_n}={2^{n-1}}$.
∴${b_n}=2{a_n}-1={2^n}-1$,
∴${T_n}=(2-1)+({2^2}-1)+({2^3}-1)+…+({2^n}-1)$,=$\frac{{2(1-{2^n})}}{1-2}-n$=2n+1-2-n.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有兩個(gè)內(nèi)角是鈍角 | B. | 至少有兩個(gè)內(nèi)角是鈍角 | ||
C. | 有三個(gè)內(nèi)角是鈍角 | D. | 沒(méi)有一個(gè)內(nèi)角是鈍角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com