20.在數(shù)列{an}中,若${a_1}=1,{a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$,則數(shù)列{an}的通項(xiàng)公式an=n×2n-1

分析 ${a_1}=1,{a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$,可得$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$.利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵${a_1}=1,{a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$,
∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$.
∴數(shù)列$\{\frac{{a}_{n}}{{2}^{n}}\}$是等差數(shù)列,首項(xiàng)與公差都為$\frac{1}{2}$.
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}+(n-1)×\frac{1}{2}$=$\frac{n}{2}$,
可得an=n•2n-1
故答案為:n•2n-1

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知|$\overrightarrow{a}$|=2|$\overrightarrow$|≠0,且關(guān)于x的方程x2+|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow$=0有實(shí)根,則$\overrightarrow{a}$與$\overrightarrow$的夾角的取值范圍是( 。
A.[0,$\frac{π}{6}$]B.[$\frac{π}{3}$,π]C.[$\frac{π}{3}$,$\frac{2π}{3}$]D.[$\frac{π}{6}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)復(fù)數(shù)z滿足i(z-2)=3(i為虛數(shù)單位),則z=(  )
A.2+3iB.2-3iC.3+2iD.3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用數(shù)學(xué)歸納法證明不等式“1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$≥1+$\frac{n}{2}$(n∈N*)”的過程中,由n=k到n=k+1時(shí),不等式的左邊( 。
A.增加了1項(xiàng)B.增加了2項(xiàng)C.增加了2k項(xiàng)D.增加了2k+1項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知隨機(jī)變量X服從正態(tài)分布N(μ,1),且P(2≤X≤4)=0.6826,則P(X>4)等于( 。
A.0.158 8B.0.158 7C.0.158 6D.0.158 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知空間四邊形ABCD的每條邊和對(duì)角線的長(zhǎng)都等于1,點(diǎn)E、F分別是AB、AD的中點(diǎn),則$\overrightarrow{ED}•\overrightarrow{FC}$等于( 。
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{{\sqrt{3}}}{8}$D.$-\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長(zhǎng)為$4({\sqrt{2}+1})$,一雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),且它的實(shí)軸長(zhǎng)等于虛軸長(zhǎng),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線OF1和PF2與橢圓的交點(diǎn)分別為A,B和C,D,其中A,C在x軸的同一側(cè).
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在題設(shè)中的點(diǎn)P,使得$|{\overrightarrow{AB}}|+|{\overrightarrow{CD}}|=\frac{3}{4}\overrightarrow{AB}•\overrightarrow{CD}$?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=λSn+1(n∈N*,λ≠-1),且a1、2a2、a3+3成等差數(shù)列.
(Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)設(shè)bn=2an-1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.焦點(diǎn)在y軸上,且漸近線方程為y=±2x的雙曲線的方程是( 。
A.x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案