【題目】某飲料廠生產(chǎn)兩種飲料.生產(chǎn)1桶飲料,需該特產(chǎn)原料100公斤,需時間3小時;生產(chǎn)1桶 飲料需該特產(chǎn)原料100公斤,需時間1小時,每天飲料的產(chǎn)量不超過飲料產(chǎn)量的2倍,每天生產(chǎn)兩種飲料所需該特產(chǎn)原料的總量至多750公斤,每天生產(chǎn)飲料的時間不低于生產(chǎn)飲料的時間,每桶飲料的利潤是每桶飲料利潤的1.5倍,若該飲料廠每天生產(chǎn)飲料桶,飲料桶時()利潤最大,則_____.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同種新能源產(chǎn)品(這兩個公司每天都固定生產(chǎn)50件產(chǎn)品),所生產(chǎn)的產(chǎn)品均在本地銷售.產(chǎn)品進(jìn)人市場之前需要對產(chǎn)品進(jìn)行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進(jìn)人市場.檢測員統(tǒng)計了甲、乙兩個下屬公司100天的生產(chǎn)情況及每件產(chǎn)品盈利虧損情況,數(shù)據(jù)如表所示:
表1
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數(shù) | 10 | 10 | 40 | 40 | 50 | |
天數(shù) | 10 | 10 | 10 | 10 | 80 |
表2
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數(shù) | 10 | 5 | 40 | 45 | 50 | |
天數(shù) | 20 | 10 | 20 | 10 | 70 |
表3
每件正品 | 每件次品 | |
甲公司 | 盈2萬元 | 虧3萬元 |
乙公司 | 盈3萬元 | 虧3.5萬元 |
(1)分別求甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的正品率(用百分?jǐn)?shù)表示).
(2)試問甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的總利潤哪個更大?說明理由.
(3)若以甲公司這100天中每天產(chǎn)品利潤總和對應(yīng)的頻率作為概率,從甲公司這100天隨機(jī)抽取1天,記這天產(chǎn)品利潤總和為X,求X的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條東西流向的筆直河流,現(xiàn)利用航拍無人機(jī)監(jiān)控河流南岸相距150米的兩點處(在的正西方向),河流北岸的監(jiān)控中心在的正北方100米處,監(jiān)控控制車在的正西方向,且在通向的沿河路上運動,監(jiān)控過程中,保證監(jiān)控控制車到無人機(jī)和到監(jiān)控中心的距離之和150米,平面始終垂直于水平面,且,兩點間距離維持在100米.
(1)當(dāng)監(jiān)控控制車到監(jiān)控中心的距離為100米時,求無人機(jī)距離水平面的距離;
(2)若記無人機(jī)看處的俯角(),監(jiān)控過程中,四棱錐內(nèi)部區(qū)域的體積為監(jiān)控影響區(qū)域,請將表示為關(guān)于的函數(shù),并求出監(jiān)控影響區(qū)域的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美寓意美好的曲線,曲線就是其中之一(如圖).給出下列三個結(jié)論:
①曲線恰好經(jīng)過6個整點(即橫縱坐標(biāo)均為整數(shù)的點);
②曲線上存在到原點的距離超過的點;
③曲線所圍成的“心形”區(qū)域的面積小于3.
其中,所有錯誤結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點為F到直線的距離為,拋物線的焦點與橢圓E的焦點F重合,過F作與x軸垂直的直線交橢圓于S,T兩點,交拋物線于C,D兩點,且.
(1)求橢圓E及拋物線G的方程;
(2)過點F且斜率為k的直線l交橢圓于A,B點,交拋物線于M,N兩點,如圖所示,請問是否存在實常數(shù),使為常數(shù),若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)以的邊為長軸且過點的橢圓的方程為橢圓的離心率,面積的最大值為,和所在的直線分別與直線相交于點,.
(1)求橢圓的方程;
(2)設(shè)與的外接圓的面積分別為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和為,把滿足條件的所有數(shù)列構(gòu)成的集合記為.
(1)若數(shù)列的通項為,則是否屬于?
(2)若數(shù)列是等差數(shù)列,且,求的取值范圍;
(3)若數(shù)列的各項均為正數(shù),且,數(shù)列中是否存在無窮多項依次成等差數(shù)列,若存在,給出一個數(shù)列的通項;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com