8.某辦公室5位職員的月工資(單位:元)分別為x1,x2,x3,x4,x5,他們?cè)鹿べY的均值為3500,方差為45,從下月開(kāi)始每人的月工資都增加100元,那么這5位職員下月工資的均值和方差分別為( 。
A.3500,55B.3500,45C.3600,55D.3600,45

分析 樣本數(shù)據(jù)加同一個(gè)數(shù),則樣本均值也加這個(gè)數(shù),樣本方差不變.

解答 解:∵辦公室5位職員的月工資(單位:元)分別為x1,x2,x3,x4,x5,
他們?cè)鹿べY的均值為3500,方差為45,
從下月開(kāi)始每人的月工資都增加100元,
∴這5位職員下月工資的均值為:3500+100=3600,
方差為45.
故選:D.

點(diǎn)評(píng) 本題考查樣本均值及樣本方差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意方差、均值性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,且底面ABCD為直角梯形,∠BAD=90°,AB∥DC.已知AD=DC=PA=1,AB=2.
(Ⅰ) 求證:平面PAD⊥平面PCD;
(Ⅱ) 設(shè)M為PB上的點(diǎn),且PM=$\frac{1}{3}$PB,求證:PD∥平面ACM;
(Ⅲ) 在(Ⅱ)的條件下,求二面角P-AC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知x與y之間的一組數(shù)據(jù),已求得關(guān)于y與x的線(xiàn)性回歸方程為$\widehat{y}$=2.4x+0.95,則k的值為( 。
x0123
yk3.355.658.2
A.1B.0.95C.0.9D.0.85

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若命題“?x0∈(0,+∞),使lnx0-ax0>0”是假命題,則實(shí)數(shù)a的取值范圍是[$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)y=f(x)的圖象如圖所示,求:
(1)函數(shù)y=f(x)的定義域;
(2)函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知60°的圓心角所對(duì)的圓弧長(zhǎng)是4cm,則這個(gè)扇形的面積等于$\frac{24}{π}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=log2(x2-ax+1+a)在區(qū)間(-∞,2)上為減函數(shù),則a的取值范圍為( 。
A.[4,+∞)B.[4,5]C.(4,5)D.[4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知A(x1,y1),B(x2,y2)是函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2x}{1-2x},x≠\frac{1}{2}}\\{-1,x=\frac{1}{2}}\end{array}\right.$的圖象上的任意兩點(diǎn)(可以重合),點(diǎn)M在直線(xiàn)x=$\frac{1}{2}$上,且$\overrightarrow{AM}$=$\overrightarrow{MB}$.
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,當(dāng)n≥2時(shí),Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+f($\frac{3}{n}$)+…+f($\frac{n-1}{n}$),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在區(qū)間[-3,2]上隨機(jī)選取一個(gè)實(shí)數(shù)x,則x使不等式|x-1|≤1成立的概率是( 。
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案