14.如圖,假設(shè)你在如圖所示的圖形中隨機撒一粒黃豆,則它落到陰影部分的概率為$\frac{1}{π}$.

分析 由題意,本題是幾何概型的概率,所以只要求出陰影部分的面積與圓面積的比即可.

解答 解:本題是幾何概型的考查,設(shè)圓的半徑為r,
則陰影部分的面積為$\frac{1}{2}×2r×r$=r2,圓的面積為πr2,
由幾何概型的概率公式可求黃豆落到陰影部分的概率為:$\frac{{r}^{2}}{π{r}^{2}}$=$\frac{1}{π}$.
故答案為:$\frac{1}{π}$.

點評 本題考查了幾何概型概率的求法;只要正確的選擇事件的測度(長度,面積,體積),利用測度比求概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù),α為直線l的傾斜角),以原點O為極點,x軸正半軸為極軸坐標系,圓C的極坐標方程為ρ=4sin(θ+$\frac{π}{3}$),
(I)求證:直線1過定點,并求其定點M坐標;
(Ⅱ)直線l與圓C的兩個交點為A,B.當|AB|最小時,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知$\left\{\begin{array}{l}2x-y≥0\\ x-y+1≤0\end{array}\right.$,則${2^{{x^2}+{y^2}}}$的最小值是32.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.閱讀如圖的程序框圖,運行相應(yīng)的程序,如果輸入的N的值是10,則輸出的S的值是$2\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x2lnx+ax(a∈R)
(Ⅰ)求函數(shù)f(x)的圖象在點(1,f(1))處的切線在y軸上的截距;
(Ⅱ)對于任意的x0>0,記函數(shù)f(x)的圖象在點(x0,f(x0))處的切線在y軸上的截距為g(x0),求g(x0)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(Ⅰ)求值:sin270°-3cos180°-2tan135°-4cos300°;
(Ⅱ) 已知α是第二象限的角,且sinα=$\frac{5}{13}$,求cos(π+α)cos(α-$\frac{π}{2}$)+cos($\frac{3π}{2}$+α)•sin(π-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.執(zhí)行如圖所示的程序框圖,若輸入的n值為5,則輸出的S值是11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax-lnx,g(x)=ex(a∈R).
(1)是否存在a及過原點的直線l,使得直線l與曲線y=f(x),y=g(x)均相切?若存在,求a的值及直線l的方程;若不存在,請說明理由;
(2)若函數(shù)F(x)=$\frac{f(x)}{g(x)}$在區(qū)間(0,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知等腰三角形頂角的余弦值為m,則底角的余弦值為(  )
A.$\frac{\sqrt{2(1-m)}}{2}$B.$\frac{\sqrt{2(1+m)}}{2}$C.$±\frac{\sqrt{2(1-m)}}{2}$D.$±\frac{\sqrt{2(1+m)}}{2}$

查看答案和解析>>

同步練習冊答案