【題目】今年3月5日,國務院總理李克強作的政府工作報告中,提到要“懲戒學術(shù)不端,力戒學術(shù)不端,力戒浮躁之風”.教育部日前公布的《教育部2019年部門預算》中透露,2019年教育部擬抽檢博士學位論文約6000篇,預算為800萬元.國務院學位委員會、教育部2014年印發(fā)的《博士碩士學位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學位論文送3位同行專家進行評議,3位專家中有2位以上(含2位)專家評議意見為“不合格”的學位論文,將認定為“存在問題學位論文”.有且只有1位專家評議意見為“不合格”的學位論文,將再送2位同行專家進得復評,2位復評專家中有1位以上(含1位)專家評議意見為“不合格”的學位論文,將認定為“存在問題學位論文”.設(shè)每篇學位論文被每位專家評議為“不合格”的概率均為,且各篇學位論文是否被評議為“不合格”相互獨立.

(1)記一篇抽檢的學位論文被認定為“存在問題學位論文”的概率為,求

(2)若擬定每篇抽檢論文不需要復評的評審費用為900元,需要復評的評審費用為1500元;除評審費外,其它費用總計為100萬元.現(xiàn)以此方案實施,且抽檢論文為6000篇,問是否會超過預算?并說明理由.

【答案】(1);(2)若以此方案實施,不會超過預算.

【解析】

(1)先求出一篇學位論文初評被認定為“存在問題學位論文”的概率,再求出一篇學位論文復評被認定為“存在問題學位論文”的概率,再把它們相加即得解;(2)先求出

再求出其最大值,比較最大值和預算的大小即得解.

(1)因為一篇學位論文初評被認定為“存在問題學位論文”的概率為,

一篇學位論文復評被認定為“存在問題學位論文”的概率為,

所以一篇學位論文被認定為“存在問題學位論文”的概率為

.

(2)設(shè)每篇學位論文的評審費為元,則的可能取值為900,1500.

,

所以

.

,

.

時,單調(diào)遞增,

時,,單調(diào)遞減,

所以的最大值為.

所以實施此方案,最高費用為(萬元).

綜上,若以此方案實施,不會超過預算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于 兩點,直線 分別與軸交于點,

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】表示,中的最大值,.已知函數(shù),

(1)設(shè),求函數(shù)上零點的個數(shù)

(2)試探討是否存在實數(shù),使得恒成立?若存在的取值范圍;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面為直角梯形,,為等邊三角形,平面平面,的中點.

(1)證明:;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不重合的兩條直線和不重合的兩個平面,,下面的幾個命題:,且,則;與平面成等角,則,,且,則;,,則;,異面,且,均與平面平行,則.在這5個命題中,真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,且下列三個關(guān)系:,中有且只有一個正確,則函數(shù)的值域是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年,依托用戶碎片化時間的娛樂需求、分享需求以及視頻態(tài)的信息負載力,短視頻快速崛起;與此同時,移動閱讀方興未艾,從側(cè)面反應了人們對精神富足的一種追求,在習慣了大眾娛樂所帶來的短暫愉悅后,部分用戶依舊對有著傳統(tǒng)文學底蘊的嚴肅閱讀青睞有加.

某讀書APP抽樣調(diào)查了非一線城市M和一線城市N100名用戶的日使用時長(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時長不低于60分鐘的用戶記為活躍用戶

1)請?zhí)顚懸韵?/span>列聯(lián)表,并判斷是否有995%的把握認為用戶活躍與否與所在城市有關(guān)?

活躍用戶

不活躍用戶

合計

城市M

城市N

合計

2)以頻率估計概率,從城市M中任選2名用戶,從城市N中任選1名用戶,設(shè)這3名用戶中活躍用戶的人數(shù)為,求的分布列和數(shù)學期望.

3)該讀書APP還統(tǒng)計了20184個季度的用戶使用時長y(單位:百萬小時),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為,已知這4個季度的用戶平均使用時長為12.3百萬小時,試以此回歸方程估計2019年第一季度()該讀書APP用戶使用時長約為多少百萬小時.

附:,其中

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若上為單調(diào)遞增,求實數(shù)的取值范圍;

(2)若,且,求證:對定義域內(nèi)的任意實數(shù),不等式恒成立.

查看答案和解析>>

同步練習冊答案