已知正方形ABCD的邊長為2,AC∩BD=O.將正方形ABCD沿對角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.

(1)當(dāng)a=2時,求證:AO⊥平面BCD.
(2)當(dāng)二面角A-BD-C的大小為120°時,求二面角A-BC-D的正切值.

(1)見解析   (2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐P—GBCD中(如圖),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中點(diǎn),PG=4

(1)求異面直線GE與PC所成角的余弦值;
(2)若F點(diǎn)是棱PC上一點(diǎn),且,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

四棱錐P—ABCD的底面是邊長為2的菱形,∠DAB=60°,側(cè)棱,M、N兩點(diǎn)分別在側(cè)棱PB、PD上,.

(1)求證:PA⊥平面MNC。
(2)求平面NPC與平面MNC的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在圓錐PO中,已知PO=,☉O的直徑AB=2,C是的中點(diǎn),D為AC的中點(diǎn).

求證:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面,且底面為正方形,分別為的中點(diǎn).

(1)求證:平面;
(2)求平面和平面的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點(diǎn)E,F,G分別是AB,AD,CD的中點(diǎn),計算:

(1)·.
(2)EG的長.
(3)異面直線EG與AC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PDQA,QAADPD.

(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案