若函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象關(guān)于點(diǎn)(
π
6
,0)中心對稱,則φ=
 
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:由f(x)=2sin(2x+φ)圖象關(guān)于點(diǎn)(
π
6
,0)成中心對稱,得2×
π
6
+φ=kπ(k∈Z),即φ=kπ-
π
3
(k∈Z),由0<φ<π可得當(dāng)k=1時,φ取值
3
解答: 解:∵f(x)=2sin(2x+φ)圖象關(guān)于點(diǎn)(
π
6
,0)成中心對稱,
∴2×
π
6
+φ=kπ(k∈Z),
∴φ=kπ-
π
3
(k∈Z),
∵0<φ<π
∴當(dāng)k=1時,φ取值
3
,
故答案為:
3
點(diǎn)評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,著重考查正弦函數(shù)的對稱性,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形OAB的圓心角為
3
,半徑為6cm,則扇形弧長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos(ωx+
π
3
)的最小正周期為π,且f(β+
π
3
)=
7
9
,β∈(
π
2
,π)
(1)求cosβ的最小值;
(2)若sin(α+β)=
7
9
,且α∈(0,
π
2
),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0)上一個縱坐標(biāo)為2的點(diǎn)到焦點(diǎn)的距離為3. 
(Ⅰ)求拋物線C的方程;
(Ⅱ) 設(shè)點(diǎn)P(0,2),過P作直線l1,l2分別交拋物線于點(diǎn)A,B和點(diǎn)M,N,直線l1,l2的斜率分別為k1和k2,且k1k2=-
3
4
.寫出線段AB的長|AB|關(guān)于k1的函數(shù)表達(dá)式,并求四邊形AMBN面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),對任意x,y∈R,都有f(x•y)=xf(y)+yf(x).?dāng)?shù)列{an}滿足:a1=2,an=f(2n),n∈N*.則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-cosx的零點(diǎn)個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=cosβ,-
π
2
<α<
π
2
,0<β<π.則α+β的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+2 在[-5,5]上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司準(zhǔn)備將1000萬元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤ξ1(萬元)的概率P分布列如表所示:
ξ1  110 120170 
 0.4
且ξ1的期望E(ξ1)=120;若投資乙項(xiàng)目一年后可獲得的利潤ξ2(萬元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為p(0<p<1)和1-p,乙項(xiàng)目產(chǎn)品價格一年內(nèi)調(diào)整次數(shù)X(次)與ξ2的關(guān)系如表所示:
X(次)  0
 ξ2 41.2 117.6204.0 
(1)求m,n的值;
(2)求ξ1的分布列;
(3)若E(ξ1)<E(ξ2)則選擇投資乙項(xiàng)目,求此時P的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案