分析 (Ⅰ)a=0,化簡函數的解析式,求出函數的導數,通過令f'(x)=0,求出極值點,判斷單調性,然后求解即可.
(Ⅱ)令$f(x)=a\sqrt{x}-\frac{x^2}{e^x}=0$,得到${x^{\frac{3}{2}}}=a{e^x}$,通過函數有兩個零點x1,x2(x1<x2)推出${x_2}-{x_1}=\frac{3}{2}ln{x_2}-\frac{3}{2}ln{x_1}=\frac{3}{2}ln\frac{x_2}{x_1}$.設$\frac{x_2}{x_1}=t$,則t>1,且$\left\{\begin{array}{l}{x_2}=t{x_1}\\{x_2}-{x_1}=\frac{3}{2}lnt\end{array}\right.$解得x1,x2,${x_1}+{x_2}=\frac{3}{2}\frac{{({t+1})lnt}}{t-1}$.構造函數$h(x)=\frac{{({x+1})lnx}}{x-1}$,x∈(1,+∞),求出導函數,然后再構造函數,求出導數判斷導函數的符號,推出函數的單調性,即可.
解答 解:(Ⅰ)當a=0時,$f(x)=-\frac{x^2}{e^x}(x>0)$,$f'(x)=\frac{{-2x•{e^x}-(-{x^2})•{e^x}}}{{{{({e^x})}^2}}}=\frac{x(x-2)}{e^x}$
令f'(x)=0,則x=2…(2分)
則x∈(0,2),f'(x)<0,y=f(x)單調遞減x∈(2,+∞),f'(x)>0,y=f(x)單調遞增
所以x=2是函數的一個極小值點,無極大值點.…(4分)
(Ⅱ)令$f(x)=a\sqrt{x}-\frac{x^2}{e^x}=0$,則${x^{\frac{3}{2}}}=a{e^x}$
因為函數有兩個零點x1,x2(x1<x2)
所以${x}^{\frac{3}{2}}=a{e}^{{x}_{1}}$,${x}^{\frac{3}{2}}=a{e}^{{x}_{2}}$,可得$\frac{3}{2}ln{x_1}=lna+{x_1}$,$\frac{3}{2}ln{x_2}=lna+{x_2}$.
故${x_2}-{x_1}=\frac{3}{2}ln{x_2}-\frac{3}{2}ln{x_1}=\frac{3}{2}ln\frac{x_2}{x_1}$.…(6分)
設$\frac{x_2}{x_1}=t$,則t>1,且$\left\{\begin{array}{l}{x_2}=t{x_1}\\{x_2}-{x_1}=\frac{3}{2}lnt\end{array}\right.$解得${x_1}=\frac{{\frac{3}{2}lnt}}{t-1}$,${x_2}=\frac{{\frac{3}{2}tlnt}}{t-1}$.
所以:${x_1}+{x_2}=\frac{3}{2}\frac{{({t+1})lnt}}{t-1}$.①…(8分)
令$h(x)=\frac{{({x+1})lnx}}{x-1}$,x∈(1,+∞),
則$h'(x)=\frac{{-2lnx+x-\frac{1}{x}}}{{{{({x-1})}^2}}}$.…(10分)
令$u(x)=-2lnx+x-\frac{1}{x}$,得$u'(x)={({\frac{x-1}{x}})^2}$.
當x∈(1,+∞)時,u'(x)>0.因此,u(x)在(1,+∞)上單調遞增,
故對于任意的x∈(1,+∞),u(x)>u(1)=0,
由此可得h'(x)>0,故h(x)在(1,+∞)上單調遞增.
因此,由①可得x1+x2隨著t的增大而增大.…(12分).
點評 本題考查函數的導數的綜合應用,構造法的應用,導函數的符號的判斷,最值的求法,考查計算能力分析問題解決問題的能力.
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f($\frac{π}{3}$)<f($\frac{3π}{4}$)<f(π) | B. | f(π)<f($\frac{π}{3}$)<f($\frac{3π}{4}$) | C. | f(π)<f($\frac{3π}{4}$)<f($\frac{π}{3}$) | D. | f($\frac{3π}{4}$)<f($\frac{π}{3}$)<f(π) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com