6.若函數(shù)y=f(x)在(0,2)上是增函數(shù),且f(x+2)的圖象關(guān)于y軸對稱,則( 。
A.f($\frac{π}{3}$)<f($\frac{3π}{4}$)<f(π)B.f(π)<f($\frac{π}{3}$)<f($\frac{3π}{4}$)C.f(π)<f($\frac{3π}{4}$)<f($\frac{π}{3}$)D.f($\frac{3π}{4}$)<f($\frac{π}{3}$)<f(π)

分析 根據(jù)y=f(x+2)是由y=f(x)向左平移2個單位得到以及f(x+2)的圖象關(guān)于y軸對稱可知y=f(x)的圖象的對稱性,然后將(2,+∞)上的函數(shù)值根據(jù)對稱性轉(zhuǎn)化到(0,2)上,最后根據(jù)單調(diào)性可得大小關(guān)系.

解答 解:∵y=f(x+2)是由y=f(x)向左平移2個單位得到,f(x+2)的圖象關(guān)于y軸對稱
∴y=f(x)的圖象關(guān)于x=2對稱,
則f(2+x)=f(2-x)
∴f(π)=f(4-π),f($\frac{3π}{4}$)=f(4-$\frac{3π}{4}$)
∵0<4-π<$\frac{π}{3}$<4-$\frac{3π}{4}$<2,y=f(x)在(0,2)上是增函數(shù),
∴f(4-π)<f($\frac{π}{3}$)<f(4-$\frac{3π}{4}$)
∴f(π)<f($\frac{π}{3}$)<f($\frac{3π}{4}$).
故選B.

點評 本題主要考查了函數(shù)的圖象的平移,以及函數(shù)圖象的對稱和利用函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=a\sqrt{x}-\frac{x^2}{e^x}({x>0})$,其中e為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)a=0時,判斷函數(shù)y=f(x)極值點的個數(shù);
(Ⅱ)若函數(shù)有兩個零點x1,x2(x1<x2),設(shè)$t=\frac{x_2}{x_1}$,證明:x1+x2隨著t的增大而增大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,直線AB為圓O的切線,切點為B,點C在圓O上,∠ABC的平分線BE交圓O于點E,DB垂直BE交圓O于點D.
(1)證明:DB=DC;
(2)設(shè)圓O的半徑為1,BC=$\sqrt{3}$,延長CE交AB于點F,求線段BF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在三棱錐P-ACD中,AD⊥CD,AD=CD=2,△PAD為正角形,點F是棱PD的中點,且平面PAD⊥平面ACD.
(1)求證;AF⊥平面PCD;
(2)求二面角P-AC-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知菱形ABCD,P為ABCD外一點,且PA⊥平面ABCD,AB=4,∠DAB=120°,PA=3.求:二面角P-BD-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若tanθ=-$\frac{1}{2}$,則$\frac{cos2θ}{1+sin2θ}$ 的值為( 。
A.3B.-3C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,正四棱錐P-ABCD的體積為2,底面積為6,E為側(cè)棱PC的中點,則異面直線PA與BE所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若公比為q的等比數(shù)列{an}的首項a1=1且滿足an=$\frac{{a}_{n-1}+{a}_{n-2}}{2}$(n=3,4,…).
(1)求q的值和{an}的通項公式;
(2)令bn=$\frac{n}{2}$•an,求數(shù)列{bn}的前n項和Sn;
(3)若數(shù)列{bn}不為等差數(shù)列,不等式-m2+$\frac{5}{2}$m+3≥(2-9Sn)•(-1)n-($\frac{1}{2}$)n-1對?n∈N*恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(1,y),$\overrightarrow$=(-2,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.5B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊答案