【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,a=btanA,且B為鈍角.
(1)證明:B﹣A= ;
(2)求sinA+sinC的取值范圍.
【答案】
(1)解:由a=btanA和正弦定理可得 = = ,
∴sinB=cosA,即sinB=sin( +A)
又B為鈍角,∴ +A∈( ,π),
∴B= +A,∴B﹣A= ;
(2)解:由(1)知C=π﹣(A+B)=π﹣(A+ +A)= ﹣2A>0,
∴A∈(0, ),∴sinA+sinC=sinA+sin( ﹣2A)
=sinA+cos2A=sinA+1﹣2sin2A
=﹣2(sinA﹣ )2+ ,
∵A∈(0, ),∴0<sinA< ,
∴由二次函數(shù)可知 <﹣2(sinA﹣ )2+ ≤
∴sinA+sinC的取值范圍為( , ]
【解析】(1)由題意和正弦定理可得sinB=cosA,由角的范圍和誘導(dǎo)公式可得;(2)由題意可得A∈(0, ),可得0<sinA< ,化簡可得sinA+sinC=﹣2(sinA﹣ )2+ ,由二次函數(shù)區(qū)間的最值可得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),向量分別為平面直角坐標內(nèi)軸正方向上的單位向量,若向量 , , ,且.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設(shè)橢圓,曲線的切線 交橢圓于、兩點,試證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,為上一點,、為橢圓的兩焦點,的周長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)橢圓,曲線的切線交橢圓于、兩點,試證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且 ∥ .
(1)求角B的大。
(2)若a+c=8,求AC邊上中線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是正數(shù)組成的數(shù)列, ,且點 在函數(shù)的圖象上.
(1)求數(shù)列的通項公式;
(2)若列數(shù)滿足,,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asin(x+ )﹣b(a>0)的最大值為2,最小值為0.
(1)求a、b的值;
(2)利用列表法畫出函數(shù)在一個周期內(nèi)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=3cos(2x﹣ )的圖象,可以將函數(shù)y=3sin2x的圖象( )
A.沿x軸向左平移 單位
B.沿x軸向右平移 單位
C.沿x軸向左平移 單位
D.沿x軸向右平移 單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知a、b、c分別是三內(nèi)角A、B、C所對應(yīng)的邊長,且b2+c2﹣a2=bc
(1)求角A的大;
(2)若sin2A+sin2B=sin2C,試判斷△ABC的形狀并求角B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1 .
(1)求證:AB1⊥平面A1BC1;
(2)若D為B1C1的中點,求AD與平面A1BC1所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com