精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且
(1)求角B的大;
(2)若a+c=8,求AC邊上中線長的最小值.

【答案】
(1)解:∵向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且 ,

∴c(sinA﹣sinC)﹣(a+b)(sinA﹣sinB)=0,

由正弦定理可得:c(a﹣c)﹣(a+b)(a﹣b)=0,化為a2+c2﹣b2=ac,

∴cosB= = ,

∵B∈(0,π),

∴B=


(2)解:設AC邊上的中點為E,由余弦定理得:(2BE)2=c2+a2﹣2cacos120°=(a+c)2﹣ac=64﹣ac≥64﹣ =48,當a=c時取到”=”.

∴AC邊上中線長的最小值為2


【解析】(1)由 ,可得c(sinA﹣sinC)﹣(a+b)(sinA﹣sinB)=0,再利用正弦定理余弦定理即可得出.(2)設AC邊上的中點為E,由余弦定理得:(2BE)2=c2+a2﹣2cacos120°=(a+c)2﹣ac=64﹣ac,再利用基本不等式的性質即可得出.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】原命題:“,為兩個實數,若,則,中至少有一個不小于1,下列說法錯誤的是

A.逆命題為:若,中至少有一個不小于1,為假命題

B.否命題為:若,都小于1 ,為假命題

C.逆否命題為:若,都小于1 ,為真命題

D.”是“,中至少有一個不小于1”的必要不充分條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】二手車經銷商小王對其所經營的型號二手汽車的使用年數與銷售價格(單位:萬元/輛)進行整理,得到如下數據:

使用年數

2

3

4

5

6

7

售價

20

12

8

6.4

4.4

3

3.00

2.48

2.08

1.86

1.48

1.10

下面是關于的散點圖:

(I)由散點圖看出,可以用線性回歸模型擬合的關系,請用相關系數加以說明;

(II)求關于的回歸方程,并預測某輛型號二手汽車當使用年數為9年時,售價大約為多少?(、的值精確到

(III)基于成本的考慮,該型號二手汽車的售價不得低于7118元,請根據(II)求出的回歸方程預測在收購該型號二手汽車時,車輛的使用年數不得超過多少年?

參考公式:,相關系數

參考數據:,,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】新生兒Apgar評分,即阿氏評分是對新生兒出生后總體狀況的一個評估,主要從呼吸、心率、反射、膚色、肌張力這幾個方面評分,滿10分者為正常新生兒,評分7分以下的新生兒考慮患有輕度窒息,評分在4分以下考慮患有重度窒息,大部分新生兒的評分多在7-10分之間,某市級醫(yī)院婦產科對1月份出生的新生兒隨機抽取了16名,以下表格記錄了他們的評分情況.

(1)現從16名新生兒中隨機抽取3名,求至多有1名評分不低于9分的概率;

(2)以這16名新生兒數據來估計本年度的總體數據,若從本市本年度新生兒任選3名,記表示抽到評分不低于9分的新生兒數,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為, 是橢圓的長軸的兩個端點(位于右側),是橢圓在軸正半軸上的頂點.

(1)求橢圓的標準方程;

(2)是否存在經過點且斜率為的直線與橢圓交于不同兩點,使得向量共線?如果存在,求出直線方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設fn(x)=(3n﹣1)x2﹣x(n∈N*),An={x|fn(x)<0}
(1)定義An={x|x1<x<x2}的長度為x2﹣x1 , 求An的長度;
(2)把An的長度記作數列{an},令bn=anan+1;
1°求數列{bn}的前n項和Sn
2°是否存在正整數m,n(1<m<n),使得S1 , Sm , Sn成等比數列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△ABC的內角A、B、C的對邊分別為a、b、c,a=btanA,且B為鈍角.
(1)證明:B﹣A=
(2)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通項公式;
(2)求數列 的前n項和Sn

查看答案和解析>>

同步練習冊答案