【題目】已知橢圓: 的離心率為,圓: 與軸交于點(diǎn)、, 為橢圓上的動(dòng)點(diǎn), , 面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點(diǎn)、,求的取值范圍.
【答案】(1) , .(2) .
【解析】試題分析:(1)由離心率公式和的關(guān)系,結(jié)合橢圓的定義可得 即為橢圓的焦點(diǎn),可得 ,再由 位于橢圓短軸端點(diǎn)時(shí), 的面積取得最大值 ,解方程即可得到 的值,即有圓和橢圓的方程;
(2)討論直線的斜率不存在時(shí),求得切線的方程,代入橢圓方程可得交點(diǎn)和弦長(zhǎng);當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,運(yùn)用直線和圓相切的條件,再由直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,化為 的函數(shù)式,運(yùn)用換元法和二次函數(shù)的最值求法,即可得到所求弦長(zhǎng)的范圍.
試題解析:(1)由題意得,解得,①
因?yàn)?/span>,所以,點(diǎn)、為橢圓的焦點(diǎn),所以,
設(shè),則,所以,當(dāng)時(shí), ,代入①解得,所以, ,
所以,圓的方程為,橢圓的方程為.
(2)①當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為, , ,
因?yàn)橹本與圓相切,所以,即,
聯(lián)立消去可得,
,
, ,
,
令,則,所以, ,
所以,所以;
②當(dāng)直線的斜率不存在時(shí),直線的方程為,解得, , .
綜上, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠連續(xù)6天對(duì)新研發(fā)的產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組數(shù)據(jù)如下表所示
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 | 4月6日 |
試銷價(jià)元 | 9 | 11 | 10 | 12 | 13 | 14 |
產(chǎn)品銷量件 | 40 | 32 | 29 | 35 | 44 |
(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關(guān)于的線性回歸方程,并預(yù)測(cè)4月6日的產(chǎn)品銷售量;
(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.
參考公式:
其中 ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一種特別列車,沿途共有個(gè)車站(包括起點(diǎn)與終點(diǎn)),因安全需要,規(guī)定在同一車站上車的旅客不能在同一車站下車。為了保證上車的旅客都有座位(每位旅客一個(gè)座位),則列車至少要安排()個(gè)座位。
A. B. 100 C. 110 D. 120
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2,a3-2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年12月18日上午10時(shí),在人民大會(huì)堂舉行了慶祝改革開放40周年大會(huì).40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國(guó)人民用雙手書寫了國(guó)家和民族發(fā)展的壯麗史詩(shī).會(huì)后,央視媒體平臺(tái),收到了來自全國(guó)各地的紀(jì)念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:
(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(Ⅱ)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平
均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)央視媒體平臺(tái)從年齡在和的作者中,按照分層抽樣的方法,抽出了7人參加“紀(jì)念改革開放40年圖片展”表彰大會(huì),現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.附:,若,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】證明:存在無(wú)窮多個(gè)棱長(zhǎng)為正整數(shù)的長(zhǎng)方體,其體積恰等于對(duì)角線長(zhǎng)的平方,且該長(zhǎng)方體的每一個(gè)表面總可以割并成兩個(gè)整邊正方形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車的投放,方便了市民短途出行,被譽(yù)為中國(guó)“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計(jì)數(shù)據(jù)如下:
不小于40歲 | 小于40歲 | 合計(jì) | |
單車用戶 | 12 | y | m |
非單車用戶 | x | 32 | 70 |
合計(jì) | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①?gòu)拇藰颖局,?duì)單車用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?
②從獨(dú)立性檢驗(yàn)角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)①若直線與的圖象相切, 求實(shí)數(shù)的值;
②令函數(shù),求函數(shù)在區(qū)間上的最大值.
(2)已知不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com