正四棱錐則的底面邊長(zhǎng)為,高,則過(guò)點(diǎn)的球的半徑為(  )
A.3B.4C.5D.6
C

試題分析:由正四棱錐及其外接球的對(duì)稱性,球心O在在正四棱錐的高線SE上,如圖,球半徑,。
所以,在直角三角形OEB中,由勾股定理得,,解得,R=5,故選C。

點(diǎn)評(píng):中檔題,正四棱錐外接球的球心,在正四棱錐高所在直線上,結(jié)合圖形,構(gòu)造直角三角形,利用勾股定理求解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點(diǎn),ABCE為菱形,∠BAD=120°,PA=AB,G、F分別是線段CE、PB的中點(diǎn).

(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.   
(Ⅰ)證明:平面;
(Ⅱ)證明:∥平面;
(Ⅲ)線段上是否存在點(diǎn),使所成角的余弦值為?若存在,找到所有符合要求的點(diǎn),并求的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),,的中點(diǎn),交于點(diǎn),將沿折起,得到如圖所示的三棱錐,其中

(1) 證明://平面;
(2) 證明:平面;
(3) 當(dāng)時(shí),求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓臺(tái)的上底半徑為2cm,下底半徑為4cm,圓臺(tái)的高為cm,則側(cè)面展開(kāi)圖所在扇形的圓心角=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).

(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使,得一簡(jiǎn)單組合體如圖2示,已知分別為的中點(diǎn).
   
圖1                              圖2
(1)求證:平面;
(2)求證: ;
(3)當(dāng)多長(zhǎng)時(shí),平面與平面所成的銳二面角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐的底面是直角梯形,,,側(cè)面為正三角形,,.如圖所示.

(1) 證明:平面;
(2) 求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平面是正三角形,且.

(1)設(shè)是線段的中點(diǎn),求證:∥平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案