【題目】已知橢圓與拋物線共焦點,拋物線上的點M到y軸的距離等于,且橢圓與拋物線的交點Q滿足.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點作拋物線的切線交橢圓于、 兩點,求此切線在x軸上的截距的取值范圍.
【答案】(I). (II).
【解析】試題分析:(I)根據(jù)拋物線上的點M到y軸的距離等于,可知點M到直線的距離等于點M到焦點的距離,由此求得且.由拋物線的定義及可求得點坐標,根據(jù)橢圓的定義求出,并由此求出橢圓的標準方程.(II)聯(lián)立直線的方程和拋物線的方程,利判別式等于零得到的一個等量關系.聯(lián)立直線的方程和橢圓的方程,利用判別式大于零求得的取值范圍.求出截距的表達式,利用得取值范圍可求得截距的取值范圍.
試題解析:
(I)∵拋物線上的點M到y軸的距離等于,
∴點M到直線的距離等于點M到焦點的距離,
得是拋物線的準線,即,
解得,∴拋物線的方程為;
可知橢圓的右焦點,左焦點,
由拋物線的定義及,得,
又,解得,
由橢圓的定義得 ,
∴,又,得,
∴橢圓的方程為.
(II)顯然, ,
由,消去x,得,
由題意知,得,
由,消去y,得,
其中 ,
化簡得,又,得,解得,
切線在x軸上的截距為,又,
∴切線在x軸上的截距的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)y=x2+(a+2)x﹣3,x∈[a,b]的圖象關于直線x=1對稱.
(1)求a、b的值和函數(shù)的零點
(2)當函數(shù)f(x)的定義域是[0,3]時,求函數(shù)f(x)的值域..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)國家環(huán)保部最新修訂的《環(huán)境空氣質量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米。某城市環(huán)保部分隨機抽取的一居民區(qū)過去20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別 | PM2.5平均濃度 | 頻數(shù) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(II)求樣本平均數(shù),并根據(jù)樣本估計總計的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時, (萬元).當年產(chǎn)量不小于80千件時, (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)已知是公差不為零的等差數(shù)列, ,且成等比數(shù)列.
(1)求數(shù)列的通項;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);
(2)怎么分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下圖中,四邊形 ABCD是等腰梯形, , ,O、Q分別為線段AB、CD的中點,OQ與EF的交點為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結AD、BC,得一幾何體如圖所示.
(Ⅰ)證明:平面ABCD平面ABFE;
(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:在四棱錐中,底面是菱形, , 平面,點為的中點,且.
(1)證明: 面;
(2)求三棱錐的體積;
(3)在線段上是否存在一點,使得平面;若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com