【題目】如圖:在四棱錐中,底面是菱形, , 平面,點(diǎn)為的中點(diǎn),且.
(1)證明: 面;
(2)求三棱錐的體積;
(3)在線段上是否存在一點(diǎn),使得平面;若存在,求出的長;若不存在,說明理由.
【答案】證明:(I)因?yàn)?/span>ABCD為菱形,所以AB=BC
又∠ABC=60°,所以AB=BC=AC, ………………1分
又M為BC中點(diǎn),所以BC⊥AM ………………2分
而PA⊥平面ABCD,BC平面ABCD,所以PA⊥BC ………………4分
又PA∩AM=A,所以BC⊥平面AMN ………………5分
(II)因?yàn)?/span>………………6分
又PA⊥底面ABCD,PA=2,所以AN=1
所以,三棱錐N—AMC的體積………………8分
………………9分
(III)存在 ………………10分
取PD中點(diǎn)E,連結(jié)NE,EC,AE,
因?yàn)?/span>N,E分別為PA,PD中點(diǎn),所以………………11分
又在菱形ABCD中,
所以NE ,即MCEN是平行四邊形 ………………12分
所以,NM//EC,
又EC平面ACE,NM平面ACE
所以MN//平面ACE, ………………13分
即在PD上存在一點(diǎn)E,使得NM//平面ACE,
此時(shí)
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于, 兩點(diǎn),點(diǎn)的坐標(biāo)為.當(dāng)變化時(shí),解答下列問題:
(1)以為直徑的圓能否經(jīng)過點(diǎn)?說明理由;
(2)過, , 三點(diǎn)的圓在軸上截得的弦長是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線共焦點(diǎn),拋物線上的點(diǎn)M到y軸的距離等于,且橢圓與拋物線的交點(diǎn)Q滿足.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點(diǎn)作拋物線的切線交橢圓于、 兩點(diǎn),求此切線在x軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以, , , , , , 分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量在, , 的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為: .
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)過點(diǎn)且與直線平行的直線交于, 兩點(diǎn),求點(diǎn)到, 兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市積極倡導(dǎo)學(xué)生參與綠色環(huán);顒(dòng),其中代號(hào)為“環(huán)保衛(wèi)士—12369”的綠色環(huán);顒(dòng)小組對(duì)2014年1月—2014年12月(一年)內(nèi)空氣質(zhì)量指數(shù)進(jìn)行監(jiān)測(cè),下表是在這一年隨機(jī)抽取的100天的統(tǒng)計(jì)結(jié)果:
指數(shù)API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)若某市某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)(記為)的關(guān)系為:,在這一年內(nèi)隨機(jī)抽取一天,估計(jì)該天經(jīng)濟(jì)損失元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季節(jié),其中有8天為重度污染,
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季節(jié) | |||
合計(jì) | 100 |
下面臨界值表供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為16.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的頂點(diǎn)的直線交橢圓于另一點(diǎn),交軸于點(diǎn),若、、成等比數(shù)列,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,點(diǎn)在函數(shù)圖像上;
(1)證明是等差數(shù)列;
(2)若函數(shù),數(shù)列滿足,記,求數(shù)列前項(xiàng)和;
(3)是否存在實(shí)數(shù),使得當(dāng)時(shí), 對(duì)任意恒成立?若存在,求出最大的實(shí)數(shù),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求A∩B,(UA)∪B,A∩(UB).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com