【題目】若函數(shù)的圖象上存在關(guān)于直線對(duì)稱的不同兩點(diǎn),則稱具有性質(zhì).已知為常數(shù),函數(shù),,對(duì)于命題:①存在,使得具有性質(zhì);②存在,使得具有性質(zhì),下列判斷正確的是( )

A.①和②均為真命題B.①和②均是假命題

C.①是真命題,②是假命題D.①是假命題,②是真命題

【答案】B

【解析】

通過(guò)函數(shù)的圖象與位置關(guān)系,可得出是否具有性質(zhì),對(duì)于函數(shù),設(shè)通過(guò)求解方程,判斷方程是否存在的解,即可得出結(jié)論.

,,定義域?yàn)?/span>,

當(dāng)恒成立,

第一象限圖象恒在直線上方,

因此不存在不同的兩點(diǎn)關(guān)于圖像對(duì)稱,

因?yàn)?/span>是奇函數(shù),由圖象的對(duì)稱性,

不存在不同的兩點(diǎn)關(guān)于圖像對(duì)稱,

所以不具有性質(zhì);

是奇函數(shù),只需判斷時(shí),是否具有性質(zhì)即可,

設(shè),令,

,當(dāng)時(shí),方程無(wú)解,

當(dāng)(舍去負(fù)值),

此時(shí),以方程的解為坐標(biāo)的點(diǎn)在上,

即方程不存在的解,所以不滿足題意中存在不同的兩點(diǎn).

所以不具有性質(zhì).

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最近上映的電影《后來(lái)的我們》引起了一陣熱潮,為了了解大眾對(duì)這部電影的評(píng)價(jià),隨機(jī)訪問(wèn)了50名觀影者,根據(jù)這50人對(duì)該電影的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,.

1)求頻率分布直方圖中的值,并估計(jì)觀影者對(duì)該電影評(píng)分不低于80的概率;

2)由頻率分布直方圖估計(jì)評(píng)分的中位數(shù)(保留兩位小數(shù))與平均數(shù);

3)從評(píng)分在的觀影者中隨機(jī)抽取2人,求至少有一人評(píng)分在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店出售一種成本為40元/千克的產(chǎn)品,據(jù)市場(chǎng)分析,若按50元/千克銷售,一個(gè)月能售出500千克,銷售單價(jià)每漲1元,月銷售量就減少10千克,設(shè)銷售單價(jià)為元/千克,月銷售利潤(rùn)為.

(1)當(dāng)銷售單價(jià)定為55元/千克時(shí),計(jì)算銷售量和月銷售利潤(rùn);

(2)求之間的函數(shù)關(guān)系式,并說(shuō)明當(dāng)銷售單價(jià)應(yīng)定為多少時(shí),月銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,函數(shù)定義于并取值于.(用數(shù)字作答)

1)若對(duì)于任意的成立,則這樣的函數(shù)_______個(gè);

2)若至少存在一個(gè),使,則這樣的函數(shù)____個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求f(x)的最小正周期和單調(diào)增區(qū)間;

(Ⅱ)當(dāng)x[ ,]時(shí),求函數(shù)f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an﹣2(nN*),數(shù)列{bn}滿足bn=(2n﹣1)an,數(shù)列{bn}的前n項(xiàng)和Tn(nN*),

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和Tn;

(3)求 的最小值以及取得最小值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).已知函數(shù),.

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)已知函數(shù)的圖象在公共點(diǎn)(x0y0)處有相同的切線,

(i)求證:處的導(dǎo)數(shù)等于0;

(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬(wàn)元,每生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本萬(wàn)元,當(dāng)年產(chǎn)量小于萬(wàn)件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于7萬(wàn)件時(shí),(萬(wàn)元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.

1)寫(xiě)出年利潤(rùn)(萬(wàn)年)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)

2)當(dāng)年產(chǎn)量約為多少萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?

(取.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)為圓上任意一點(diǎn),點(diǎn),線段的中點(diǎn)為,點(diǎn)的軌跡為曲線.

1)求點(diǎn)的軌跡的方程;

2)直線與圓相交于兩點(diǎn),求的最小值及此時(shí)直線的方程;

3)求曲線的公共弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案