【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬(wàn)元,每生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本萬(wàn)元,當(dāng)年產(chǎn)量小于萬(wàn)件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于7萬(wàn)件時(shí),(萬(wàn)元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)年)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)
(2)當(dāng)年產(chǎn)量約為多少萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?
(取).
【答案】(1) (2)當(dāng)年產(chǎn)量約為萬(wàn)件,該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大,最大利潤(rùn)為萬(wàn)元
【解析】
(1)根據(jù)年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本,分和兩種情況,得到與x的關(guān)系式即可;(2)求出兩種情況的最大值,作比較即可得到本題答案.
(1)產(chǎn)品售價(jià)為元,則萬(wàn)件產(chǎn)品銷售收入為萬(wàn)元.
依題意得,當(dāng)時(shí),,
當(dāng)時(shí),,
;
(2)當(dāng)時(shí),,
當(dāng)時(shí),的最大值為(萬(wàn)元),
當(dāng)時(shí),,
當(dāng)時(shí),單調(diào)遞增,當(dāng)單調(diào)遞減,
當(dāng)時(shí),取最大值(萬(wàn)元),
當(dāng)時(shí),取得最大值萬(wàn)元,
即當(dāng)年產(chǎn)量約為萬(wàn)件,該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大,最大利潤(rùn)為萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,都是各項(xiàng)為正數(shù)的數(shù)列,且,.對(duì)任意的正整數(shù)n,都有,,成等差數(shù)列,,,成等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)若存在p>0,使得集合M=恰有一個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)的圖象上存在關(guān)于直線對(duì)稱的不同兩點(diǎn),則稱具有性質(zhì).已知為常數(shù),函數(shù),,對(duì)于命題:①存在,使得具有性質(zhì);②存在,使得具有性質(zhì),下列判斷正確的是( )
A.①和②均為真命題B.①和②均是假命題
C.①是真命題,②是假命題D.①是假命題,②是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,已知,,,,,平面平面,為的中點(diǎn),連接.
(1)求證:平面;
(2)求二面角大小的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):
若分?jǐn)?shù)不低于95分,則稱該員工的成績(jī)?yōu)?/span>“優(yōu)秀”.
(1)從這20人中任取3人,求恰有1人成績(jī)“優(yōu)秀”的概率;
(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問(wèn)題.
組別 | 分組 | 頻數(shù) | 頻率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
②若從所有員工中任選3人,記表示抽到的員工成績(jī)?yōu)?/span>“優(yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名學(xué)生作為樣本測(cè)量身高.測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組;第二組;…;第八組.下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組與第八組人數(shù)之和為第七組的兩倍.
(1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);
(2)求第六組和第七組的頻率并補(bǔ)充完整頻率分布直方圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形中,,,是的中點(diǎn).,、分別是、上的動(dòng)點(diǎn),且,設(shè)(),沿將梯形翻折,使平面平面,如圖.
(1)當(dāng)時(shí),求證:;
(2)若以、、、為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線, .
(1)求證:對(duì),直線與圓總有兩個(gè)不同的交點(diǎn);
(2)求弦的中點(diǎn)的軌跡方程,并說(shuō)明其軌跡是什么曲線;
(3)是否存在實(shí)數(shù),使得原上有四點(diǎn)到直線的距離為?若存在,求出的范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行頑強(qiáng)的斗爭(zhēng),到1998年底全縣的綠化率已達(dá)到30%。從1999年開(kāi)始,每年將出現(xiàn)這樣的局面,即原有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化。
(1)設(shè)全縣面積為1,1998年底綠化總面積為,經(jīng)過(guò)n年后綠化總面積為,求證:。
(2)至少需要多少年的努力,才能使全縣的綠化率超過(guò)60%?(年取整數(shù),lg2=0.3010)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com