【題目】如圖,在多面體中,已知,,,,平面平面,的中點,連接.

(1)求證:平面;

(2)求二面角大小的正弦值.

【答案】(1)詳見解析;(2).

【解析】

(1)先證,,取的中點為,連接,再證,,從而得四邊形為平行四邊形,從而得證;

(2)易知平面,所以為坐標原點,所在射線為軸建立空間直角坐標系,分別求平面的法向量和平面的法向量,利用即可得解.

(1)證明:過.

因為,所以

因為,,所以,

因為,所以,

所以四邊形為矩形,所以,

的中點為,連接.

因為的中點,所以,,

所以,所以四邊形為平行四邊形,

所以,因為平面平面.

所以平面.

(2)因為平面平面,,所以平面.

為坐標原點,所在射線為軸建立空間直角坐標系.

因為,,所以,

,所以

因為,所以

,所以,設平面的法向量為

所以.

,,所以,,

設平面的法向量為,

所以,

設平面與平面所成角為

,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺有一檔益智答題類綜藝節(jié)日,每期節(jié)目從現(xiàn)場編號為018080名觀眾中隨機抽取10人答題.答題選手要從科技文藝兩類題目中選一類作答,一共回答10個問題,答對1題得1.

1)若采用隨機數(shù)表法抽取答題選手,按照以下隨機數(shù)表,從下方帶點的數(shù)字2開始向右讀,每次讀取兩位數(shù),一行用完接下一行左端,求抽取的第6個觀眾的編號.

1622779439 4954435482 1737932378 873509643 8426349164

8442175331 5724550688 7704744767 2176335025 8392120676

2)若采用等距系統(tǒng)抽樣法抽取答題選手,且抽取的最小編號為06,求抽取的最大編號.

3)某期節(jié)目的10名答題選手中6人選科技類題目,4人選文藝類題目.其中選擇科技類的6人得分的平均數(shù)為7,方差為;選擇文藝類的4人得分的平均數(shù)為8,方差為.求這期節(jié)目的10名答題選手得分的平均數(shù)和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,函數(shù)定義于并取值于.(用數(shù)字作答)

1)若對于任意的成立,則這樣的函數(shù)_______個;

2)若至少存在一個,使,則這樣的函數(shù)____個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn,且Sn=2an﹣2(nN*),數(shù)列{bn}滿足bn=(2n﹣1)an,數(shù)列{bn}的前n項和Tn(nN*),

(1)求數(shù)列{an}和{bn}的通項公式;

(2)求數(shù)列{bn}的前n項和Tn;

(3)求 的最小值以及取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,.已知函數(shù),.

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)已知函數(shù)的圖象在公共點(x0y0)處有相同的切線,

(i)求證:處的導數(shù)等于0;

(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當時,解不等式

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學大學畢業(yè)后,決定利用所學專業(yè)進行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)萬件,需另投入流動成本萬元,當年產(chǎn)量小于萬件時,(萬元);當年產(chǎn)量不小于7萬件時,(萬元).已知每件產(chǎn)品售價為6元,假若該同學生產(chǎn)的商品當年能全部售完.

1)寫出年利潤(萬年)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動成本)

2)當年產(chǎn)量約為多少萬件時,該同學的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?

(取.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型企業(yè)針對改善員工福利的,三種方案進行了問卷調(diào)查,調(diào)查結(jié)果如下:

支持方案

支持方案

支持方案

35歲以下的人數(shù)

200

400

800

35歲及以上的人數(shù)

100

100

400

1)從所有參與調(diào)查的人中,用分層隨機抽樣的方法抽取人,已知從支持方案的人中抽取了6人,求的值.

2)從支持方案的人中,用分層隨機抽樣的方法抽取5人,這5人中年齡在35歲及以上的人數(shù)是多少?年齡在35歲以下的人數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的一個焦點恰好與拋物線的焦點重合,且兩曲線的一個交點為,若,則雙曲線的方程為( 。

A. B.

C. D.

查看答案和解析>>

同步練習冊答案