【題目】某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行頑強(qiáng)的斗爭(zhēng),到1998年底全縣的綠化率已達(dá)到30%。1999年開(kāi)始,每年將出現(xiàn)這樣的局面,即原有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化。

(1)設(shè)全縣面積為1,1998年底綠化總面積為,經(jīng)過(guò)n年后綠化總面積為,求證:

(2)至少需要多少年的努力,才能使全縣的綠化率超過(guò)60%?(年取整數(shù),lg2=0.3010)

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

(1)設(shè)現(xiàn)有的沙漠面積為,經(jīng)過(guò)n年后沙漠面積為,

于是,.

依題意,由兩部分組成:

一部分是原有的綠洲減去被侵蝕的部分后剩余的面積;

另一部分是新綠化的面積.

于是,.

(2)由(1).

所以,

注意,即.

化簡(jiǎn)得,,即,取常用對(duì)數(shù)得.

于是,,所以,至少要經(jīng)過(guò)5年才能使權(quán)限綠化率超過(guò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬(wàn)元,每生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本萬(wàn)元,當(dāng)年產(chǎn)量小于萬(wàn)件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于7萬(wàn)件時(shí),(萬(wàn)元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.

1)寫(xiě)出年利潤(rùn)(萬(wàn)年)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)

2)當(dāng)年產(chǎn)量約為多少萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?

(取.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)為圓上任意一點(diǎn),點(diǎn),線段的中點(diǎn)為,點(diǎn)的軌跡為曲線.

1)求點(diǎn)的軌跡的方程;

2)直線與圓相交于兩點(diǎn),求的最小值及此時(shí)直線的方程;

3)求曲線的公共弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合,且兩曲線的一個(gè)交點(diǎn)為,若,則雙曲線的方程為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)為預(yù)防H1N1病毒爆發(fā),某生物技術(shù)公司研制出一種新流感

疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒(méi)有通過(guò)),公司

選定2000個(gè)流感樣本分成三組,測(cè)試結(jié)果如下表:

分組

A

B

C

疫苗有效

673

疫苗無(wú)效

77

90

已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33

I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,問(wèn)應(yīng)在C組抽取樣本多少個(gè)?

II)已知,求通過(guò)測(cè)試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)平面區(qū)域,用表示屬于的所有整點(diǎn)(即平面上坐標(biāo)都是整數(shù)的點(diǎn))的個(gè)數(shù).表示由曲線和兩直線所圍成的區(qū)域(包括邊界);表示由曲線和兩直線所圍成的區(qū)域(包括邊界).______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)令,討論的單調(diào)性.

(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.( 為自然對(duì)數(shù)的底數(shù), …).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周髀算經(jīng)》 是我國(guó)古代的天文學(xué)和數(shù)學(xué)著作。其中一個(gè)問(wèn)題的大意為:一年有二十四個(gè)節(jié)氣(如圖),每個(gè)節(jié)氣晷長(zhǎng)損益相同(即物體在太陽(yáng)的照射下影子長(zhǎng)度的增加量和減少量相同).若冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長(zhǎng)為( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】供電部門(mén)對(duì)某社區(qū)1000位居民201812月份的用電情況進(jìn)行統(tǒng)計(jì)后,按用電量分為,,,,五組,整理得到如下的頻率分布直方圖,則下列說(shuō)法錯(cuò)誤的是(

A.按用電量分組中,人數(shù)最多的一組有400

B.12月份用電不低于20度的有500

C.12月份人均用電量為25

D.12月份的用電量的中位數(shù)是20

查看答案和解析>>

同步練習(xí)冊(cè)答案