【題目】將正方形沿對(duì)角線折起,當(dāng)以四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),異面直線與 所成的角為( )
A. B. C. D.
【答案】C
【解析】分析:將正方形沿對(duì)角線折起,可得當(dāng)三棱錐體積最大時(shí), 平面.設(shè)是折疊前的位置,連接,可得就算直線與所成角,算出的各邊長(zhǎng),得是等邊三角形,從而求得直線與所成角的大小.
詳解:設(shè)是正方形對(duì)角線、的交點(diǎn),將正方形沿對(duì)角線折起,
可得當(dāng)平面時(shí),點(diǎn)到平面的距離等于,而當(dāng)與平面不垂直時(shí),點(diǎn)到平面的距離為,且,由此可得當(dāng)三棱錐體積最大時(shí), 平面.設(shè)是折疊前的位置,連接,因?yàn)?/span>,所以就算直線與所成角,設(shè)正方形的邊長(zhǎng)為,因?yàn)?/span>平面, 平面,所以,
因?yàn)?/span>,所以,
得是等邊三角形, ,
所以直線與所成角為,故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)
(1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過焦點(diǎn)F的直線l與拋物線分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)對(duì)于拋物線上任一點(diǎn)Q,點(diǎn)P(2t,0)都滿足|PQ|≥2|t|,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.則下列結(jié)論中:
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命題的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x1,y1),D(x2,y2)其中(x1<x2)是曲線y2=9x(y≥0).上的兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C且|BC|=3.
(Ⅰ)當(dāng)點(diǎn)B的坐標(biāo)為(1,0)時(shí),求直線AD的方程:
(Ⅱ)記△AOD的面積為S1,梯形ABCD的面積為S2,求的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, ,其中是自然常數(shù), .
(1)當(dāng)時(shí),求的極值,并證明恒成立;
(2)是否存在實(shí)數(shù),使的最小值為 ?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l:y=2x+2,若l與橢圓 的交點(diǎn)為A,B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為 的點(diǎn)P的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com