寫出(x+
1
x2
9的二項(xiàng)展開式中系數(shù)最大的項(xiàng)
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由條件根據(jù)二項(xiàng)式系數(shù)的性質(zhì)、二項(xiàng)式展開式的通項(xiàng)公式,可得(x+
1
x2
9的二項(xiàng)展開式中系數(shù)最大的項(xiàng).
解答: 解:(x+
1
x2
9的二項(xiàng)展開式中系數(shù)最大的項(xiàng)為第五項(xiàng)或第六項(xiàng),
即 T5=
C
4
9
•x-3,或 T6=
C
5
9
•x-6,
故答案為:T5=
C
4
9
•x-3,或 T6=
C
5
9
•x-6
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),設(shè)f(x)=2
a
b
+m+1(m∈R)
(1)求函數(shù)f(x)在x∈[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
6
]時(shí),-4<f(x)<4恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形周長為20,當(dāng)扇形的面積最大時(shí),扇形的中心角為
 
弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四面體的棱長為a,則高為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=-
3
,
π
2
<θ<π,那么cosθ-sinθ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項(xiàng)式(x-
1
x
5的展開式中,含x3的項(xiàng)的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的所有棱長都相等,則側(cè)棱與底面所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式-2≤x2+ax+b≤1(a≠0)的解集中恰有一個(gè)元素,則b+
1
a2
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案