分析 由已知利用余弦定理可得$\frac{1}{2}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,整理可解得c=$\sqrt{3}$a,進而再利用余弦定理即可解得cosB=0,結合B的范圍即可得解B的值.
解答 解:∵2a=b,∠C=60°,
∴由余弦定理可得:cosC=$\frac{1}{2}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,整理可得:a2+b2-c2=ab,可得:a2+4a2-c2=2a2,可得:3a2=c2,解得:c=$\sqrt{3}$a,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+3{a}^{2}-4{a}^{2}}{2a×\sqrt{3}a}$=0,
∵B∈(0,π),
∴B=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.
點評 本題主要考查了余弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{41\sqrt{41}π}}{48}$ | B. | 12π | C. | $\frac{25π}{4}$ | D. | $\frac{41π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-3,3) | B. | [-3,+∞) | C. | (-3,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 該幾何體的體積為16 | B. | 該幾何體的表面積為36 | ||
C. | 該幾何體的最長棱為$\sqrt{41}$ | D. | 該幾何體外接球的表面積為41π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com