【題目】已知橢圓的離心率為分別為左、右頂點,為其右焦點,是橢圓上異于的動點,且的最小值為-2

1求橢圓的標準方程;

2若過左焦點的直線交橢圓兩點,求的取值范圍

【答案】1;2

【解析】

試題分析:1由橢圓的離心率得到的關系,再由的最小值為求得的值,則可求,橢圓方程可求;21,則斜率不存在時,用坐標分別表示出,直接求得;直線斜率存在時,設直線的方程為,代入橢圓方程,消去,利用根與系數(shù)的關系求得的橫坐標的積,把轉(zhuǎn)化為的橫坐標的和與積的形式,代入后化為關于的函數(shù)式得答案

試題解析:1根據(jù)題意知,即,

,則,

,

,

,時,,

,則

橢圓的方程為

2,得

,,

則直線斜率不存在時,

,,于是,

直線斜率存在時,設直線的方程為,代入橢圓方程,消去

,

,則,

,

,

綜上知,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)據(jù),,,,是杭州市100個普通職工的201610月份的收入(均不超過2萬元),設這100個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上馬云201610月份的收入(約100億元),則相對于、,這101個月收入數(shù)據(jù)( )

A. 平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

B. 平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

C. 平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

D. 平均數(shù)大大增大,中位數(shù)可能不變,方差變大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側棱,底面為直角梯形,其中,.

1求證:側面PAD底面ABCD

2求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次籃球定點投籃訓練中,規(guī)定每人最多投3次,在處每投進一球得3分;在處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學在處的投中率,在處的投中率為,該同學選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學投籃訓練結束后所得的總分,其分布列為:


0

2

3

4

5


0.03





1)求的值;

2)求隨機變量的數(shù)學期望

3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;

2)設函數(shù),當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12)

某班甲、乙兩名同學參加l00米達標訓練,在相同條件下兩人l0次訓練的成績(單位:秒)如下:


1

2

3

4

5

6

7

8

9

10


11.6

12.2

13.2

13.9

14.0

11.5

13.1

14.5

11.7

14.3


12.3

13.3

14.3

11.7

12.0

12.8

13.2

13.8

14.1

12.5

(I)請作出樣本數(shù)據(jù)的莖葉圖;如果從甲、乙兩名同學中選一名參加學校的100米比賽,從成績的穩(wěn)定性方面考慮,選派誰參加比賽更好,并說明理由(不用計算,可通過統(tǒng)計圖直接回答結論)

(Ⅱ)從甲、乙兩人的10次訓練成績中各隨機抽取一次,求抽取的成績中至少有一個比128秒差的概率.

(Ⅲ)經(jīng)過對甲、乙兩位同學的多次成績的統(tǒng)計,甲、乙的成績都均勻分布在[115,145]

之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于08秒的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形中,,點的中點,將沿折起到的位置,使二面角是直二面角.

1證明: ;

2求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1若存在使得≥0成立,求的范圍;

2求證:當>1時,在1的條件下,成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)當時,討論函數(shù)的單調(diào)性;

(2)設,當時,若對任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案