【題目】如圖所示,在矩形中,,點(diǎn)是的中點(diǎn),將沿折起到的位置,使二面角是直二面角.
(1)證明: ;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由題意可得是等腰直角三角形,所以,因為平面平面,根據(jù)面面垂直的性質(zhì)定理可得平面,可得;(2)以所在的直線為軸、軸,過垂直于平面的射線為軸,建立空間直角坐標(biāo)系,可得平面的法向量為;設(shè)平面的法向量為,列方程組賦值求得其坐標(biāo),根據(jù)向量的夾角公式可得二面角的余弦值.
試題解析:(1)是的中點(diǎn),是等腰直角三角形,易知,,即.又平面平面,面面面,又面.
(2)分別以所在的直線為軸、軸,過垂直于平面的射線為軸,建立空間直角坐標(biāo)系,則.
設(shè)平面的法向量為;平面的法向量為.由
,二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(2)設(shè)函數(shù),當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠以千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時可獲得的利潤是元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于1500元,求的取值范圍;
(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤最大,問:該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,、分別為左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于、的動點(diǎn),且的最小值為-2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過左焦點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見部分如下:
試著根據(jù)表中的信息解答下列問題:
(Ⅰ)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);
(Ⅱ)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80)和[80,90)分?jǐn)?shù)段的試卷中抽取7份進(jìn)行分析,再從中任選2人進(jìn)行交流,求交流的學(xué)生中,成績位于[70,80)分?jǐn)?shù)的人恰有一人被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】英州育才中學(xué)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與市醫(yī)院抄錄了至月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料(表):
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
晝夜溫差 | ||||||
就診人數(shù)(個) |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)求選取的是月與月的兩組數(shù)據(jù),請根據(jù)至月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
其中回歸系數(shù)公式,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校的一個社會實踐調(diào)查小組,在對該校學(xué)生的良好“用眼習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120分問卷.對收回的100份有效問卷進(jìn)行統(tǒng)計,得到如下列聯(lián)表:
做不到科學(xué)用眼 | 能做到科學(xué)用眼 | 合計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計 | 75 | 25 | 100 |
(1)現(xiàn)按女生是否能做到科學(xué)用眼進(jìn)行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機(jī)抽取3份,并記其中能做到科學(xué)用眼的問卷的份數(shù),試求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)若在犯錯誤的概率不超過的前提下認(rèn)為良好“用眼習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請說明理由.
附:獨(dú)立性檢驗統(tǒng)計量,其中.
獨(dú)立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】衡陽市為增強(qiáng)市民的環(huán)境保護(hù)意識,面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名后按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,則應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在10名學(xué)生中,男生有x名,現(xiàn)從10名學(xué)生中任選6人去參加某項活動:①至少有1名女生;②5名男生,1名女生;③3名男生,3名女生.若要使①為必然事件,②為不可能事件,③為隨機(jī)事件,則x=( )
A.5B.6C.3或4D.5或6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com