【題目】已知函數(shù),其中.
(I)判斷并證明函數(shù)的奇偶性;
(II)判斷并證明函數(shù)在上的單調性;
(III)是否存在這樣的負實數(shù),使對一切恒成立,若存在,試求出取值的集合;若不存在,說明理由.
【答案】(1)見解析(2)見解析(3)
【解析】分析:(I)根據(jù)函數(shù)奇偶性的定義進行判斷即可.
(II)根據(jù)函數(shù)單調性 定義進行判斷.
(III)根據(jù)函數(shù)奇偶性和單調性的關系將不等式進行轉化,利用參數(shù)分離法進行求解即可.
詳解:
(I)∵,
∴是奇函數(shù).
(II)在上為減函數(shù).
證明:任取且,
則
,
∵ ,
∴,
得,得到,
∴在上為減函數(shù);
(III)∵ ,
∵在上為減函數(shù),
∴對恒成立
由對恒成立得:
對恒成立,
令,
∵,∴,
∴,得,
由對恒成立得:
,由對恒成立得:,
即綜上所得:,
所以存在這樣的,其范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知方程.
()若已知方程表示橢圓,則的取值范圍為__________.
()語句“”是語句“方程”表示雙曲線的(_____________).
A.充分不必要條件 B.必要不充分條件 C.充在條件 D.既不充分也不必要條件
()根據(jù)()的結論,以“如果那么”的形式寫出一個正確命題,記作命題,則
命題:__________.
()套用量詞命題的格式:“, ”或“, ”,改寫()中命題,
表述形式為:__________.
()寫出()中命題的逆命題,記作命題,則
命題:__________.
()判斷()中命題的真假,并陳述判斷理由.
命題為__________命題,因為__________.
()若已知方程表示橢圓,則該橢圓兩個焦點的坐標分別為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)f(x)=4sin(2x+), (x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù);
② y=f(x)可改寫為y=4cos(2x-);
③y=f(x)的圖象關于(-,0)對稱;
④ y=f(x)的圖象關于直線x=-對稱;
其中正確的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足.
(1)若(且),數(shù)列為遞增數(shù)列,求數(shù)列的通項公式;
(2)若(且),數(shù)列為遞增數(shù)列,數(shù)列為遞減數(shù)列,且,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一條光線經(jīng)過P(2,3)點,射在直線l:x+y+1=0上,反射后穿過點Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:三棱錐中,側面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點在平面內.
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設二面角的大小為,求的值;
(Ⅲ)求點到面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若對任意的 恒成立,求實數(shù)的最小值.
(2)若 且關于的方程 在 上恰有兩個不相等的實數(shù)根,求實數(shù) 的取值范圍;
(3)設各項為正的數(shù)列 滿足: 求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知與曲線相切的直線,與軸, 軸交于兩點, 為原點, , ,( ).
(1)求證:: 與相切的條件是: .
(2)求線段中點的軌跡方程;
(3)求三角形面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com