【題目】一條光線經(jīng)過P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長(zhǎng)度.
【答案】(1) 5x-4y+2=0. (2)
【解析】試題分析:(1)設(shè)點(diǎn)Q′(x′,y′)為Q關(guān)于直線l的對(duì)稱點(diǎn)且QQ′交l于M點(diǎn),可得直線QM的方程,與l聯(lián)立可得點(diǎn)M的坐標(biāo),利用中點(diǎn)坐標(biāo)公式可得Q′的坐標(biāo).設(shè)入射線與l交于點(diǎn)N,利用P,N,Q′共線,得到入射光線PN的方程;
(2)利用兩點(diǎn)間的距離公式求出PQ′即可.
試題解析:
(1)設(shè)點(diǎn)Q′(x′,y′)為Q關(guān)于直線l的對(duì)稱點(diǎn)且QQ′交l于M點(diǎn).
∵,∴kQQ′=1.
∴QQ′所在直線方程為y-1=1·(x-1),
即x-y=0.
由
解得l與QQ′的交點(diǎn)M的坐標(biāo)為.
又∵M為QQ′的中點(diǎn),
由此得解得
∴Q′(-2,-2).
設(shè)入射光線與l交點(diǎn)為N,則P、N、Q′共線.
又P(2,3),Q′(-2,-2),得入射光線的方程為,
即5x-4y+2=0.
(2)∵l是QQ′的垂直平分線,從而|NQ|=|NQ′|,
∴|PN|+|NQ|=|PN|+|NQ′|=|PQ′|=,
即這條光線從P到Q的長(zhǎng)度是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遼寧號(hào)航母紀(jì)念章從2012年10月5日起開始上市,通過市場(chǎng)調(diào)查,得到該紀(jì)念章每枚的市場(chǎng)價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:
上市時(shí)間天 | |||
市場(chǎng)價(jià)元 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系:①;②;③;
(2)利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;
(3)設(shè)你選取的函數(shù)為,若對(duì)任意實(shí)數(shù),關(guān)于的方程恒有個(gè)想異實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列的前項(xiàng)和為,且滿足;在數(shù)列中,
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為. 若對(duì)任意,存在實(shí)數(shù),使恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成績(jī),整理數(shù)據(jù)并按分?jǐn)?shù)段,,,,,進(jìn)行分組.已知測(cè)試分?jǐn)?shù)均為整數(shù),現(xiàn)用每組區(qū)間的中點(diǎn)值代替該組中的每個(gè)數(shù)據(jù),則得到體育成績(jī)的折線圖如下:
(1)若體育成績(jī)大于或等于70分的學(xué)生為“體育良好”,已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)該校高一年級(jí)學(xué)生“體育良好”的人數(shù);
(2)用樣本估計(jì)總體的思想,試估計(jì)該校高一年級(jí)學(xué)生達(dá)標(biāo)測(cè)試的平均分;
(3)假設(shè)甲、乙、丙三人的體育成績(jī)分別為,且,,,當(dāng)三人的體育成績(jī)方差最小時(shí),寫出的所有可能取值(不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,側(cè)面是邊長(zhǎng)為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(I)判斷并證明函數(shù)的奇偶性;
(II)判斷并證明函數(shù)在上的單調(diào)性;
(III)是否存在這樣的負(fù)實(shí)數(shù),使對(duì)一切恒成立,若存在,試求出取值的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項(xiàng)和記為, ,點(diǎn)在直線上, .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè), , 是數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,并且,對(duì)任意正整數(shù), ,設(shè)().
(1)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(2)設(shè),求證:數(shù)列不可能為等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com