18.(1)求證:當(dāng)a、b、c為正數(shù)時(shí),(a+b+c)($\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$)≥9
(2)已知x∈R,a=x2-1,b=2x+2,求證a,b中至少有一個(gè)不少于0.

分析 (1)通過(guò)展開左側(cè)表達(dá)式,利用基本不等式證明即可.
(2)利用反證法假設(shè)a,b中沒(méi)有一個(gè)不少于0,推出矛盾結(jié)果即可.

解答 (1)證明:左邊=$3+({\frac{a}+\frac{a}})+({\frac{c}+\frac{c}})+({\frac{a}{c}+\frac{c}{a}})$,
因?yàn)椋篴、b、c為正數(shù)
所以:左邊$≥3+2\sqrt{\frac{a}•\frac{a}}+2\sqrt{\frac{c}•\frac{c}}+2\sqrt{\frac{a}{c}•\frac{c}{a}}$=3+2+2+2=9,
∴$({a+b+c})({\frac{1}{a}+\frac{1}+\frac{1}{c}})≥9$…(5分)
(2)證明:假設(shè)a,b中沒(méi)有一個(gè)不少于0,即a<0,b<0則:a+b<0,
又a+b=x2-1+2x+2=x2+2x+1=(x+1)2≥0,
這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,
所以a,b中至少有一個(gè)不少于0.…(10分)

點(diǎn)評(píng) 本題考查不等式的證明,綜合法以及反證法的應(yīng)用,考查邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知$\overrightarrow{a}$,$\overrightarrow$是夾角為60°的兩個(gè)單位向量,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知下面四個(gè)命題:
(1)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是系統(tǒng)抽樣;
(2)兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
(3)對(duì)分類變量X和Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,“X與Y有關(guān)系”的把握程度越大;
(4)在回歸直線方程$\stackrel{∧}{y}$=0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量大約增加0.4個(gè)單位.
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f'(x)<0,設(shè)$a=f(-1),b=f(\frac{3}{2}),c=f(2)$則( 。
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上非頂點(diǎn)的一點(diǎn)A關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,設(shè)∠ABF=α,且$α∈[{\frac{π}{12},\left.{\frac{π}{6}})}\right.$,則雙曲線離心率的取值范圍是[$\sqrt{2}$,1+$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.證明:若函數(shù)f(x)在區(qū)間[a,b]上是增函數(shù),那么方程f(x)=0在區(qū)間[a,b]上至多只有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知復(fù)數(shù)z與(z+1)2-2i 均是純虛數(shù),則z=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,曲線C:$\left\{\begin{array}{l}{x=\sqrt{2}cosa+1}\\{y=\sqrt{2}sina+1}\end{array}\right.$(α為參數(shù)),在以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為:ρsin(θ+$\frac{π}{4}$)=m(m∈R).
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)若曲線C上存在點(diǎn)P到直線l的距離為$\frac{\sqrt{2}}{2}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.(文科)等差數(shù)列{an}的首項(xiàng)a1=3,a5=11,bn=an-12
(1)求an和{ bn}的前n項(xiàng)和Sn
(2)若Tn=|b1|+|b2|+…+|bn|,求Tn;
(3)設(shè)cn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

同步練習(xí)冊(cè)答案