7.有一批數(shù)量很大的商品的次品率為1%,從中任意地連續(xù)取出200件商品,設(shè)其中次品數(shù)為X,則E(X)=2.

分析 由題意知商品數(shù)量相當(dāng)大,抽200件商品可以看作200次獨(dú)立重復(fù)試驗(yàn),根據(jù)所給的n,p的值,代入獨(dú)立重復(fù)試驗(yàn)的期望和方差公式,計(jì)算出結(jié)果.

解答 解:∵商品數(shù)量相當(dāng)大,抽200件商品可以看作200次獨(dú)立重復(fù)試驗(yàn),
∴ξ~B(200,1%).
∵Eξ=np,這里n=200,p=1%,q=99%,
∴Eξ=200×1%=2.
故答案為:2.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的數(shù)學(xué)期望的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$,過焦點(diǎn)F1的弦AB(A、B在雙曲線的同支上)長為8,另一焦點(diǎn)為F2,則△ABF2的周長為8$\sqrt{3}$+16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若不等式$\frac{{a}^{2}+^{2}}{2}$+1>m(a+b)對(duì)任意正數(shù)a,b恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.(-∞,2)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤2}\\{y≤2}\end{array}\right.$,則z=$\frac{1}{2}$x+y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,-4),且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.-6B.$\sqrt{10}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若變量x,y滿足條件$\left\{\begin{array}{l}x+2y≥1\\ x+4y≤3\\ y≥0\end{array}\right.$則z=x+y的最大值是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,則a的值是( 。
A.2B.1C.1或2D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.誠信是立身之本,道德之基,某校學(xué)生會(huì)創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“$\frac{周實(shí)際回收水費(fèi)}{周投入成本}$”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠信數(shù)據(jù)統(tǒng)計(jì):
 第一周  第二周第三周  第四周
 第一個(gè)周期 95% 98% 92% 88%
 第二個(gè)周期 94% 94% 83% 80%
 第三個(gè)周期 85%92%  95%96% 
(1)計(jì)算表中十二周“水站誠信度”的平均數(shù)$\overline{x}$;
(2)分別從表中每個(gè)周期的4個(gè)數(shù)據(jù)中隨機(jī)抽取1個(gè)數(shù)據(jù),設(shè)隨機(jī)變量X表示取出的3個(gè)數(shù)據(jù)中“水站誠信度”超過91%的數(shù)據(jù)的個(gè)數(shù),求隨機(jī)變量X的分布列和期望;
(3)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠信為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某四棱錐的三視圖如圖所示,則該四棱錐的體積是( 。
A.36B.24C.12D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案